
BURKE & BURKE

Register File

ALU

External Memory Interface

Control
Unit

Register File

ALU

External Memory Interface

Control
Unit

Register File

ALU

External Memory Interface

Control
Unit

Register File

ALU

External Memory Interface

Control
Unit

internal bus

Register File

ALU

External Memory Interface

Control
Unit

internal bus

THE 6309 BOOK
Inside the 6309 Microprocessor

Second Edition

Chris Burke

Copyright © 1992, 1993 by Burke & Burke
All Rights Reserved

cburke
Typewritten Text
This page intentionally left blank.

cburke
Typewritten Text
Foreword by Chris Burke It's been 20 years since I wrote and self-published "The 6309 Book" as one of my many Color Computer projects for Burke & Burke. I've been wanting to put out a PDF version of this book for several years now, and it feels great to finally cross that goal off of my to-do list. The recovery of "The 6309 Book" in this PDF format was quite an adventure! It began with a note I received from an old friend, Bob Swoger of the Glenside CoCo Club, asking if the club could scan an old copy of the book and distribute it online. I offered instead to reconstruct the original in PDF format. I'd written the original manuscript in Claris Works and MacDraw, on a monochrome Mac SE/30. I'd used both the word processing and the database features of Claris Works: the page for each machine language instruction is actually a Claris Works database view. To create the PDF version, I pulled an old lime green iMac G3 running System 9.1 out of storage. It still had the source files for the book, and the discontinued software to read and print the source files. I printed each chapter to a PDF file, saved to disk. The old iMac I used wouldn't burn a CD, wouldn't read a thumb drive, didn't have a floppy, and used SCSI hard drives that I had no hardware to read. To get the PDF files for the chapters off of the iMac G3, I ran them through Binhex and Stuffit, then used an ancient TCP/IP program to send the archives up to an FTP site. I downloaded the Stuffit files from the FTP site, only to find that modern versions of Stuffit couldn't read them. So.... I fired up SheepShaver, a PowerPC mac emulator that also runs System 9.1, used it to expand the Stuffit archives into a shared folder on my 27" iMac, and then assembled all of the pieces using Adobe Acrobat Pro under Mac OSX. The result was almost right; the last step was to replace some missing fonts with modern equivalents. With that story of ancient means of production and recovery, I offer for your amusement and education "The 6309 Book," my twentieth-century assembly language primer for a marvelous 8/16 bit CPU used in aftermarket Color Computer upgrades. Enjoy! Chris Burke4/22/2013

cburke
Typewritten Text

cburke
Typewritten Text

cburke
Typewritten Text

cburke
Typewritten Text

cburke
Typewritten Text
This page intentionally left blank.

TABLE OF CONTENTS

Page Subsection Title

1-1 SECTION 1 PROCESSOR OVERVIEW
1-1 INTRODUCTION
1-2 6309 HARDWARE SUMMARY
1-4 SOFTWARE FEATURES
1-5 PROGRAMMING MODEL
1-9 PROCESSOR MODES
1-9 PROCESSOR ADDRESS MAP
1-10 SUMMARY OF REMAINING SECTIONS

2-1 SECTION 2 ADDRESSING MODE REFERENCE
2-1 INTRODUCTION
2-2 SOURCE FORMS FIELD NOTATION
2-2 EA CALCULATION FIELD NOTATION
2-3 POST-BYTES FIELD
2-4 INDIVIDUAL MODE DESCRIPTIONS

3-1 SECTION 3 INSTRUCTION REFERENCE
3-1 INTRODUCTION
3-2 SOURCE FORMS FIELD NOTATION
3-3 OPERATION FIELD NOTATION
3-4 CONDITION CODES FIELD
3-5 ENCODING FIELD
3-7 INDIVIDUAL INSTRUCTION DESCRIPTIONS

4-1 SECTION 4 APPLICATION INFORMATION
4-1 INTRODUCTION
4-1 DETECTING THE 6309
4-2 DETECTING 6309 NATIVE MODE
4-3 SWITCHING BETWEEN EMULATION AND NATIVE MODES
4-6 SELECTING AND USING THE 6309 FIRQ MODE
4-8 USING THE W REGISTER IN EMULATION MODE

1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-2 DETECTING 6309 NATIVE MODE
4-3 SWITCHING BETWEEN EMULATION AND NATIVE MODES
4-6 SELECTING AND USING THE 6309 FIRQ MODE
4-8 USING THE W REGISTER IN EMULATION MODE
4-10 NATIVE MODE INTERRUPT PROCESSING
4-14 USING THE TRAP VECTOR
4-18 NEW 16-BIT OPERATIONS
4-19 NEW 32-BIT OPERATIONS
4-21 USING THE TFM BLOCK MOVE INSTRUCTION
4-29 HARDWARE MULTIPLICATION AND DIVISION
4-31 USING BIT MANIPULATION INSTRUCTIONS
4-38 CAPABILITIES OF THE D AND W REGISTERS
4-40 USES FOR THE V REGISTER
4-42 REGISTER-TO-REGISTER OPERATIONS
4-44 APPLICATION SUMMARY

A-1 APPENDIX A 6309 PROGRAMMING CARD
A-1 INSTRUCTION SET
A-13 ADDRESSING MODES
A-14 POST-BYTES

2

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

SECTION 1
PROCESSOR OVERVIEW

1.1 INTRODUCTION

Hitachi’s HD63B09E microprocessor has been available for over five years. A drop-in
replacement for the Motorola MC68B09E, the Hitachi processor features a x10 reduction in
power consumption and additional power-saving features.

The HD63B09E is one member of a line of Hitachi microprocessors designed to replace
the 6809 in low-power applications such as portable or battery-powered systems. Other
processors in the “6309 family” include the HD63C09 (a 3 MHz version with internal clock
generation) and the HD6309E (a 1 MHz version with external clocking).

Hitachi markets the 6309 family as exact replacements for the 6809, but as early as 1988
Japanese hobbyists discovered that the 6309 includes many advanced features. The
advanced features of the 6309 were a well-kept secret in the United States and Europe
until early in 1992, when a Japanese hobbyist named H. Kakugawa distributed a
description on the Internet communication network under the title “A Memo on the Secret
Features of 6309”.

The advanced features of the 6309, when taken advantage of by software, make this
processor considerably faster and more powerful than a 6809 in the same system. For
example, the 6309 can copy information from peripherals or memory up to four times as
fast as the 6809. The 6309 also includes new registers for greater flexibility in calculation,
new machine language instructions for more efficient calculation, and new addressing modes
for more powerful data manipulation.

This new second edition of The 6309 Book describes the advanced features of the 6309.
It includes many corrections and additions, including information about several new 6309
addressing modes not described in previous editions.

Burke & Burke has written this book for programmers who are already familiar with the 6809
microprocessor. In it, we’ve concentrated on describing the differences between the two

1-1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

6309. It includes many corrections and additions, including information about several new
6309 addressing modes not described in previous editions.

Burke & Burke has written this book for programmers who are already familiar with the 6809
microprocessor. In it, we’ve concentrated on describing the differences between the two
processors and on providing application programming examples that take advantage of
the 6309.

1.2 6309 Hardware Summary

The hardware of the 6309 includes an external memory / control interface, a control unit, an
arithmetic logic unit (ALU), and a register file, as shown in Figure 1.1

Register File

ALU

External Memory Interface

Control
Unit

internal bus

internal bus

Figure 1.1 Hardware Architecture of the 6309

The external memory / control interface allows the 6309 to work as part of a complete
computer system. The 6309 can perform calculations, but it has no on-chip peripherals or
memory. The external interface has two parts: a memory interface, used to connect
peripherals and memory (ROM / RAM) to the 6309, and a control interface, used to
synchronize the 6309 with external events (RESET, interrupts).

1-2

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

synchronize the 6309 with external events (RESET, interrupts).

The control unit is responsible for fetching machine-language instructions from memory
external to the 6309. It decodes these instructions, converting them into a sequence of
internal signals that control the external interface, the ALU and the register file. The control
unit also performs hardware-level interrupt processing (such as register stacking and
dispatch).

The ALU performs calculations such as addition, subtraction, logical AND and logical OR.
The shape of the ALU symbol suggests that it accepts two inputs and produces a single
output; in truth, the ALU processes a combination of inputs (taken from the register file or
external memory) and produces a combination of outputs (sent to the register file or
external memory). The selection of which operands the ALU will process, and of which
operation the ALU will perform, is determined by the control unit as it decodes each
instruction. Some functions, such as multiplication and division, are more complex than the
ALU can handle in a single operation. For these functions, the control unit performs a
sequence of ALU operations, all in the process of decoding a single machine language
instruction.

The register file is a list of places where the 6309 can store the results of calculations. In the
6309, the register file is divided into twelve independent registers, called CC, A, B, E, F,
DP, X, Y, U, PC, SP, and V. Several of these registers are dedicated to special purposes;
for example, the PC (program counter) register keeps track of the memory address from
which the next machine language instruction byte will be fetched. Other registers are
considered to be general-purpose; for example, both the A and B registers can be used in
any arithmetic or logical calculation.

The register file contains both 8-bit and 16-bit registers. In addition, the control unit can
combine certain 8-bit registers into a single register to perform 16-bit or 32-bit operations.
These combined registers are called D (A and B), W (E and F), and Q (A, B, E, and F).

The lines between each of the elements in Figure 1.1 represent the flow of data and control
within the 6309 processor. It is not necessary to understand the details of internal operation
when programming the 6309, but a basic understanding of the functional blocks in Figure
1.1 will provide the programmer with valuable insight into the behavior of individual machine
language instructions.

1.3 Software Features

1-3

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

control within the 6309 processor. It is not necessary to understand the details of internal
operation when programming the 6309, but a basic understanding of the functional blocks in
Figure 1.1 will provide the programmer with valuable insight into the behavior of individual
machine language instructions.

1.3 Software Features

The 6309 provides two operating modes: Emulation Mode, and Native Mode. In
Emulation Mode, the 6309 provides the same features as the 6809. These include:

• 10 addressing modes
- 6800-compatible modes
- Short address (direct) addressing of any 256 byte memory block
- Long relative branches
- Program counter (PC) relative
- True indirect addressing
- Indexed addressing with 0, 5, 8, or 16-bit constant offsets; 8 or 16-bit

accumulator offsets; auto-increment / decrement by 1 or 2
• Improved stack manipulation
• Over 1400 instructions counting all addressing modes
• 8 x 8 unsigned hardware multiply
• 16-bit arithmetic

The 6309 adds new instructions, registers, and addressing modes - even when operating
in Emulation Mode. These include:

• Two additional 8-bit registers (E, F), combinable to a 16-bit register (W)
• D and W registers combinable to a 32-bit register (Q)
• New instructions:

- 16 x 16 bit hardware multiplication
- 32 / 16 bit, and 16 / 8 bit, hardware division
- Interruptible memory-to-memory block moves
- Inter-register arithmetic and logical operations
- Byte-oriented bit manipulation instructions
- Single-bit arithmetic and logical operations

• New indexed addressing modes:
- E-, F-, and W-offset from 6809 index register, with optional indirection
- Auto-increment and auto-decrement by 2 from W register, with

optional indirection
- Zero-offset from W register
- 16-bit offset from W register

• Automatic low power mode during SYNC and CWAI

1-4

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

- Auto-increment and auto-decrement by 2 from W register, with
optional indirection

- Zero-offset from W register
- 16-bit offset from W register

• Automatic low power mode during SYNC and CWAI
• Illegal Opcode trap interrupt
• Division by Zero trap interrupt
• 16-bit arithmetic

Native Mode further improves the operation of the processor in two ways:

• Faster execution of many instructions (15% typical speed increase)
• W register saved and restored during interrupt processing

All of the new instructions and registers are available in both Native Mode and Emulation
Mode.

1.4 Programming Model

The 6309 has twelve registers, called CC, A, B, E, F, DP, X, Y, U, SP, PC, and V. The
Figure classifies these registers into several categories: the condition code register (CC),
the direct page register (DP), accumulators (A, B, E, F, D, W, and Q), the program counter
(PC), the value register (V) and pointer registers (W, X, Y, U, SP).

Note that the W register is both an accumulator and a pointer register. In truth, the W register
is a hybrid accumulator / pointer register. This register combines many of the best features
of each register type.

1-5

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

15 0P C

15 0S P

15 0U

15 0Y

15 0X

15 0V

7 0D P

7 0F7 0E
15 0W
15 0Q

7 0B7 0A
15 0D
31 16Q

Carry
Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

E F H I N Z V C

7 0CC

Direct Page
Register

Accumulators

Pointer
Registers

Value
Register

Program
Counter

Condition
Code
Register

1.4.1 Condition Code Register

The condition code register defines the state of the processor. Each bit has an independent
function.

1-6

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

The carry (C) bit represents the carry or borrow from an arithmetic operation. It’s also used
as an extra bit in shift and rotate instructions.

The overflow (V) bit indicates signed two’s complement overflow, which occurs when the
sign bit differs from the carry bit after an arithmetic operation.

The zero (Z) bit is set when the result of an operation is zero.

The negative (N) bit always contains the value of the most-significant bit of the result of the
last operation. For two’s complement arithmetic, the result is negative when the N bit is set.

The interrupt (I) bit and fast interrupt (F) bit can be set or cleared by a program. When set,
the I bit disables IRQ* interrupts; the F bit disables FIRQ* interrupts when set.

The half-carry (H) bit is set when an arithmetic operation produces a carry from bit 3 to bit 4
of the result.

The entire (E) bit indicates which registers the 6309 stacked during the most recent interrupt.
When set, all of the registers were stacked; when clear, only the program counter and
condition code register were stacked. This bit effects the operation of the RTI instruction.

1.4.2 Direct Page Register

The value in the direct page (DP) register is used as the 8 most-significant bits of the 16-bit
memory address when an instruction uses direct addressing mode.

1.4.3 Accumulators

6309 instructions manipulate 1, 8, or 16-bit data. Most of these instructions manipulate data
in one of the accumulator registers.

The A and B registers are used to manipulate 8-bit data; they are called general-purpose
registers, since almost any instruction can manipulate data in A or B. The E and F registers
also manipulate 8-bit data, with somewhat less flexibility.

The D and W registers are 16-bit registers formed from pairs of 8-bit registers. D is a
general-purpose accumulator; W can also be used for many 16-bit operations.

1-7

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

The A and B registers are used to manipulate 8-bit data; they are called general-purpose
registers, since almost any instruction can manipulate data in A or B. The E and F registers
also manipulate 8-bit data, with somewhat less flexibility.

The D and W registers are 16-bit registers formed from pairs of 8-bit registers. D is a
general-purpose accumulator; W can also be used for many 16-bit operations.

Both the D and the W register function as pointer, rather than accumulator, registers under
certain conditions. Several new 6309 addressing modes use W as in index register, while
the 6309’s block move instruction can use D to point at the data source or destination.

1.4.4 Program Counter

The program counter contains the address of the next instruction byte to be fetched by the
processor. This register increments automatically each time the processor fetches an
instruction byte.

Some instructions, such as JMP and RTS, modify the value of the program counter directly.
This changes the address for instruction fetches, causing execution to resume at a new
address.

1.4.5 Value Register

The value (V) register retains whatever value the program stores there, even across
RESET.

The V register can also be used as an operand in register-to-register instructions such as
EORR (exclusive-OR register-to-register) and ADDR (add register-to-register).

1.4.6 Pointer Registers

There are three kinds of pointer registers on the 6309.

The first group, index registers, includes the X and Y registers. These registers are most
useful as index registers or loop counters, but they may also be used for other purposes.

The second group, stack pointer registers, includes the U and SP registers. The SP register

1-8

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

There are three kinds of pointer registers on the 6309.

The first group, index registers, includes the X and Y registers. These registers are most
useful as index registers or loop counters, but they may also be used for other purposes.

The second group, stack pointer registers, includes the U and SP registers. The SP register
points at an area of memory used to automatically store register values during interrupts,
and return addresses during subroutine calls. This area is called the system stack. The U
register points at another area of memory, which my be used as a temporary value stack or
for other purposes.

The third group, special-purpose pointer registers, includes the D and W registers. The
6309 includes 8 new addressing mode variations which use W as an index register. One
new 6309 instruction, TFM (block move), can use the D register as a source or destination
data pointer.

 1.5 Processor Modes

The 6309 contains a special register, called the mode (MD) register. This register cannot be
used for calculation, but values stored in this register effect the operation of the processor.

We have already mentioned that the 6309 supports two operating modes: Emulation
Mode, and Native Mode. The programmer can select between these modes through the
least-significant bit of the MD register. When this bit is clear, the processor operates in
Emulation Mode. When this bit is set, the processor operates in Native Mode.

Other bits of the MD register are described in the Applications section.

1.6 Processor Address Map

The 6309 does not have any on-chip peripherals, so no memory locations are reserved for
this purpose. Computer designers using the 6309 can place peripherals at any address in
the processor’s 64K map.

The highest 16 addresses of the processor’s map are reserved for interrupt vectors. Each
of these vectors contains a two-byte value, selected by the computer or software
designer, that is the address of a subroutine to be called whenever the associated interrupt
occurs. The Table shows the type of interrupt assigned to each vector:

1-9

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

The 6309 does not have any on-chip peripherals, so no memory locations are reserved for
this purpose. Computer designers using the 6309 can place peripherals at any address in
the processor’s 64K map.

The highest 16 addresses of the processor’s map are reserved for interrupt vectors. Each
of these vectors contains a two-byte value, selected by the computer or software
designer, that is the address of a subroutine to be called whenever the associated interrupt
occurs. The Table shows the type of interrupt assigned to each vector:

Address Interrupt Type

$FFFE Processor reset (RESET* line)

$FFFC Non-maskable interrupt (NMI* line)

$FFFA Software interrupt (SWI instruction)

$FFF8 Interrupt (IRQ* line)

$FFF6 Fast interrupt (FIRQ* line)

$FFF4 Second software interrupt (SWI2 instruction)

$FFF2 Third software interrupt (SWI3 instruction)

$FFF0 Illegal Opcode and Division by Zero Trap (exception)

1-10

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

SECTION 2
ADDRESSING MODE REFERENCE

2.1 INTRODUCTION

This section describes each of the addressing modes of the 6309 processor. Each
description includes 8 fields:

Name The name of the addressing mode (sometimes
abbreviated) in a box at the upper left of the description.

Synopsis A brief summary of what the instruction does. The
Synopsis for each instruction is printed along the line at the
top of its page.

Source Forms The way the addressing mode is written in 6309 assembly
language. This item uses symbols to represent variable
portions of the addressing mode. Note that in 6309 source
code, the addressing mode follows the instruction
mnemonic on the same line, separated from it by one or
more spaces.

EA Calculation A symbolic, formal description of hthe addressing mode
calculates the address of the instruction’s operand.

Description Text describing the addressing mode in more detail.

Comments Additional information about special considerations when
using this addressing mode.

Examples A short assembly language program fragment illustrating
the use of the addressing mode.

Post-Bytes A definition of the machine-language (hexadecimal)
encoding of the addressing mode as it must be stored in
memory after the basic instruction.

2.2 SOURCE FORMS FIELD NOTATION

The Source Forms field of each description uses symbols to describe how a programmer
would code the addressing mode in assembly language.

2-1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

The Source Forms field of each description uses symbols to describe how a programmer
would code the addressing mode in assembly language.

Upper-case letters and punctuation marks represent literal parts of the assembly language
addressing mode.

Lower-case letters represent variable portions of the instruction. The programmer must
replace lower-case letters occuring in Source Forms section with appropriate addressing
mode details. Each lower-case symbol identifies the general type of an operand according
to the following table:

S y m b o l M e a n i n g
r Any 1- character register name valid for this addressing mode (e.g. X)
ea, n Any expression, which may include labels, numeric constants, and

calculations so long as the value of the expression can be completely
determined during assembly.

2.3 EA CALCULATION FIELD NOTATION

The EA Calculation item of each description tells how the addressing mode calculates the
address of the operand.

Each 6309 addresing mode performs a different calculation when executed, but all of the
operations follow a general pattern: whatever the operation, it produces an operand
address m from some combination of values stored in internal registers and external
memory. The EA Calculation field of each description uses symbols to describe these
calculations. The Table explains the meaning of each symbol:

S y m b o l M e a n i n g
<- Assignment; the entity on the left of this symbol is assigned (”takes

on”) the value of the expression on right of this symbol.
‘ Placed after a register name, idicates “after decrementing”.
(signed) Placed before a register name, this symbol indicates that the 6309

treats the value of the register as a signed number when converting it
from 5 or 8 bits to 16 bits (e.g. m<-(signed)B means “m takes on
the signed value of B”).

+, - Addition or subtraction of the expressions on the left and right sides
of the symbol.

(…) The value of the memory location(s) accessed by using the enclosed
expression as an address.

2-2

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

sides of the symbol.
(…) The value of the memory location(s) accessed by using the enclosed

expression as an address.
sizeof(…) The size, in bytes, of the item in the parenthesis (e.g.

sizeof(basic instruction) is the size of the instruction’s
Encoding field described in Section, and sizeof(post-bytes) is
the size of the addressing mode post-bytes described in Section 2).

r The value of a register, identified with the same symbol in the Source
Forms item of the instruction description.

m The calculated address of the operand.
n, ea The value of an expression identified with the same symbol in the

Source Forms field.
; Marks the end of one calculation and the beginning of another,

performed by the same addressing mode.

2.4 POST-BYTES FIELD

The Post-Bytes field gives a rule for encoding the addressing mode as a series of 8-bit
hexadecimal values (6309 machine language). If you’re using an assembler program, you’ll
probably never need to know the encoding of individual addressing modes. The
information in this field is provided for debugging, hand-coding, and special-purpose
applications.

When hand-coding an entire instruction, first code the basic instruction as described in the
Encoding field of the instruction’s description (Section 3). If the Encoding field does not
include the notation “(+ post-bytes)”, the instruction is completely coded using the
information provided in Section 3. If the Encoding field does include “(+ post-bytes)”,
you must encode additional bytes as described in Section 2 for the desired addressing
mode. For example, to encode the instruction:

LDA 3,X

we first find the description of the 8-bit LD instruction in Section 3. The description lists
several possible encodings; we select the encoding for register A with indexed address
mode:

$A6 (+ post-bytes)

Since the encoding indicates post-bytes, we refer to the description of the register indexed
addressing mode in Section 2. Here again the description lists several possible encodings;
we select the encoding for register X with 5-bit offset, and plug in the desired offset of +3 to

2-3

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

indexed addressing mode in Section 2. Here again the description lists several possible
encodings; we select the encoding for register X with 5-bit offset, and plug in the desired
offset of +3 to get post-bytes of:

$03

Now we combine the basic instruction encoding and the post-byte encoding to obtain the
complete encoding for this instruction:

$86 $03

Refer to Section 3, Instruction Reference, for additional information.

2-4

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Source Forms: ea
<ea

EA Calculation: m <- DP:ea

Description: The direct addressing mode takes a 1-byte value from the post-
byte(s), advancing the program counter past the post-bytes after
instruction execution.

The value is used as the 8 least-significant bits of the 16-bit memory
address of the operand. The contents of the DP (Direct Page) register
are used as the 8 most-significant address bits.

Examples: STB <$7E ;Store B at address $7E
JSR <QUICK ;Call subroutine at address ‘QUICK’

Post-Bytes: $JJ

Where JJ is the least-significant byte of the address of the
operand.

Direct Least-Significant Byte of Literal Address

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-5

Comments: The address ea in the source form may be any expression that
produces a 16-bit result or any expression preceded by the symbol >
(forcing a 16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Direct addressing accesses 1-, 8-, 16-, or 32-bit data, based on the
instruction.

Source Forms: [ea] ;indexed form

EA Calculation: m <- (ea)

Description: The extended indirect addressing mode takes a 2-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution. The value is used as the 16-bit memory address
of a 16-bit pointer to the operand.

Examples: JMP [$FFFE] ;Jump to address at $FFFE (RESET vector)

Post-Bytes: $9FJJKK

Where JJ is the most-significant byte, and KK is the least-
significant byte, of the address of a pointer to the operand.

Extd. Indirect Literal Address of Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-6

Comments: The address ea in the source form may be any expression that
produces a 16-bit result or any expression preceded by the symbol >
(forcing a 16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Source Forms: >ea

EA Calculation: m <- ea

Description: The extended addressing mode takes a 2-byte value from the post-
bytes, advancing the program counter past the post-bytes after
instruction execution. The value is used as the 16-bit memory address
of the operand.

Examples: LDD >$1720 ;Load D with value stored at address $1720
JMP >START ;Jump to address ‘START’

Post-Bytes: $JJKK

Where JJ is the most-significant byte, and KK is the least-
significant byte, of the address of the operand.

Extended Literal Address of Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-7

Comments: The address ea in the source form may be any expression that
produces a 16-bit result or any expression preceded by the symbol >
(forcing a 16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Source Forms: #n

EA Calculation: m <- PC + sizeof(basic instruction)

Description: The immediate addressing mode takes a 1-byte operand from the
post-byte(s), advancing the program counter past the post-bytes after
instruction execution.

The interpretation of the operand byte (e.g. signed, unsigned, bit field,
or other) depends on the instruction but does not effect the encoding of
the operand.

Examples: LDA #$20 ;Load A with the value $20 (32 decimal)
PSHS Y,X,B ;Push Y, X, and B (equiv. to #$34 operand)

Post-Bytes: $JJ

Where JJ is the operand value.

Immediate (8- Literal Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-8

Comments: The operand n in the source form may be any expression that
produces an 8-bit result or any expression preceded by the symbol <
(forcing an 8-bit value); a list of register names (which the assembler
converts into an 8-bit field).

Regardless of how the operand is represented in source form, the
encoding of the instruction includes only the actual operand value, and
not any of the calculation done to initially obtain it.

Source Forms: #n

EA Calculation: m <- PC + sizeof(basic instruction)

Description: The immediate addressing mode takes a 2-byte operand from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The interpretation of the operand word (e.g. signed, unsigned, bit field,
or other) depends on the instruction but does not effect the encoding of
the operand.

Examples: LDD #$1720 ;Load D with the value $1720
LDX #65432 ;Load X with the value 65,432

Post-Bytes: $JJKK

Where JJ is the most-significant byte, and KK is the least-
significant byte, of the operand value.

Immediate (16- Literal Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-9

Comments: The operand n in the source form may be any expression that
produces a 16-bit result or any expression preceded by the symbol >
(forcing a 16-bit value).

Regardless of how the operand is represented in source form, the
encoding of the instruction includes only the actual operand value, and
not any of the calculation done to initially obtain it.

Source Forms: #n

EA Calculation: m <- PC + sizeof(basic instruction)

Description: The immediate addressing mode takes a 4-byte operand from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The interpretation of the operand long word (e.g. signed, unsigned, bit
field, or other) depends on the instruction but does not effect the
encoding of the operand.

Examples: LDQ #$17204598 ;Load Q with the value $17204598

Post-Bytes: $WWJJKKZZ

Where WW is the most-significant byte, and ZZ is the least-
significant byte, of the operand value.

Immediate (32- Literal Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-10

Comments: The operand n in the source form may be any expression that
produces a 32-bit result or any expression preceded by the symbol
>> (forcing a 32-bit value).

Regardless of how the operand is represented in source form, the
encoding of the instruction includes only the actual operand value, and
not any of the calculation done to initially obtain it.

Source Forms:

EA Calculation:

Description: When using Inherent addressing, the instruction itself implies its
operands.

This addressing mode has no additional source coding, effective
address calculation, or machine language encoding.

Examples: ABX ;Add B to X (inherent addressing)
CLRD ;Clear D register (inherent addressing)

Post-Bytes:

Inherent No Additional Operands

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-11

Comments:

Source Forms: [,r++] ;indexed form

EA Calculation: m <- (r); r’ <- r+2

Description: The post-increment indirect addressing mode uses the value stored in
register r, as the address of a 16-bit pointer to the operand.

After accessing the operand, but before completing execution of the
instruction, this addressing mode adds $0002 to register r.

Examples: LDD [,X++] ;Load D from pointer at X, advancing X by 2
LDY [,W++] ;Load Y from pointer at W, advancing W by 2

Post-Bytes: $M1 (M = address register; 9=X, B=Y, D=U, F=S)
$D0 (register W)

Post-Inc Indirect Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-12

Comments: Post-increment indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 16-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: ,r+ ;indexed form

EA Calculation: m <- r; r’ <- r+1

Description: The post-increment indexed addressing mode uses the value stored in
register r, as the address of the operand.

After accessing the operand, but before completing execution of the
instruction, this addressing mode adds $0001 to register r.

Examples: LDA ,X+ ;Load A from address in X, advancing X by 1

Post-Bytes: $M0 (M = address register; 8=X, A=Y, C=U, E=S)

Post-Inc. (8-Bit) Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-13

Comments: Post-increment indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 8-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: ,r++ ;indexed form

EA Calculation: m <- r; r’ <- r+2

Description: The post-increment indexed addressing mode uses the value stored in
register r, as the address of the operand.

After accessing the operand, but before completing execution of the
instruction, this addressing mode adds $0002 to register r.

Examples: LDD ,X++ ;Load D from address in X, advancing X by 2
LDY ,W++ ;Load Y from address in W, advancing W by 2

Post-Bytes: $M1 (M = address register; 8=X, A=Y, C=U, E=S)
$CF (register W)

Post-Inc. (16-Bit) Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-14

Comments: Post-increment indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 16-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: [,--r] ;indexed form

EA Calculation: r’ <- r-2; m <- (r’)

Description: The pre-decrement indirect addressing mode subtracts $0002 from the
value stored in register r, and then uses the value as the address of a
16-bit pointer to the operand.

Examples: LDD [,--X] ;Double-decrement X, load D from pointer at X
LDU [,--W] ;Double-decrement W, load U from pointer at W

Post-Bytes: $M3 (M = address register; 9=X, B=Y, D=U, F=S)
$F0 (register W)

Pre-Dec Indirect Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-15

Comments: Pre-decrement indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 16-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: ,-r ;indexed form

EA Calculation: r’ <- r-1; m <- r’

Description: The pre-decrement indexed addressing mode subtracts $0001 from
the value in register r, and then uses the decremented value as the
address of the operand.

Examples: LDA ,-X ;Decrement X, load A from address in X

Post-Bytes: $M2 (M = address register; 8=X, A=Y, C=U, E=S)

Pre-Dec. (8-Bit) Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-16

Comments: Pre-decrement indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 8-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: ,--r ;indexed form

EA Calculation: r’ <- r-2; m <- r’

Description: The pre-decrement indexed addressing mode subtracts $0002 from
the value in register r, and then uses the decremented value as the
address of the operand.

Examples: LDD ,--X ;Double-decrement X, load D from address in X
LDY ,--W ;Double-decrement W, load Y from address in W

Post-Bytes: $M3 (M = address register; 8=X, A=Y, C=U, E=S)
$EF (register W)

Pre-Dec. (16-Bit) Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-17

Comments: Pre-decrement indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction. It is most useful when accessing a block of
contiguous 16-bit data, since it leaves register r pointing at the “next”
data item.

Source Forms: ,r ;indexed form

EA Calculation: m <- r

Description: The register indexed addressing mode uses the value stored in register
r, as the address of the operand.

Examples: LDX ,X ;Load X from address stored in register X
LDU ,W ;Load U from address stored in register W

Post-Bytes: $M4 (M = address register; 8=X, A=Y, C=U, E=S)
$8F (register W)

Reg. Indexed Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-18

Comments: Register indexed addressing accesses 8-, 16-, or 32-bit data, based
on the instruction.

The assembler automatically selects this addressing mode when the
offset value is zero and no < or > symbol appears in the source form.

Source Forms: A,r ;indexed form

EA Calculation: m <- r + (signed)A

Description: The A accumulator indexed addressing mode takes a 1-byte value from
the A register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX A,X ;Load X from address X+A

Post-Bytes: $M6 (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (A) A + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-19

Comments: A accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: B,r ;indexed form

EA Calculation: m <- r + (signed)B

Description: The B accumulator indexed addressing mode takes a 1-byte value from
the B register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX B,X ;Load X from address X+B

Post-Bytes: $M5 (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (B) B + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-20

Comments: B accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: D,r ;indexed form

EA Calculation: m <- r + D

Description: The D accumulator indexed addressing mode takes a 2-byte value from
the D register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX D,X ;Load X from address X+D

Post-Bytes: $MB (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (D) D + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-21

Comments: D accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: E,r ;indexed form

EA Calculation: m <- r + (signed)E

Description: The E accumulator indexed addressing mode takes a 1-byte value from
the E register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX E,X ;Load X from address X+E

Post-Bytes: $M7 (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (E) E + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-22

Comments: E accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: F,r ;indexed form

EA Calculation: m <- r + (signed)F

Description: The F accumulator indexed addressing mode takes a 1-byte value from
the F register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX F,X ;Load X from address X+F

Post-Bytes: $MA (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (F) F + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-23

Comments: F accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: W,r ;indexed form

EA Calculation: m <- r + W

Description: The W accumulator indexed addressing mode takes a 2-byte value
from the W register, advancing the program counter past the post-
bytes after instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX W,X ;Load X from address X+W

Post-Bytes: $ME (M = address register; 8=X, A=Y, C=U, E=S)

Reg. Indexed (W) W + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-24

Comments: W accumulator indexed addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: ea,r ;indexed form
<ea,r ;indexed form

EA Calculation: m <- r + (signed)ea

Description: The register indexed addressing mode takes a 1-byte value from the
post-byte, advancing the program counter past the post-byte after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX -5,X ;Load X from address X-5

Post-Bytes: $MM (MM = address register and offset; 00+=X, 20+=Y,
40+=U, 60+=S)

The 5-bit signed offset value is stored in the 5 least-
significant bits of MM. For example, MM = 3F indicates a

Reg. Indexed (5- Offset + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-25

Comments: The source form address ea may be any expression that produces a 5-
bit result, or any expression preceded by the symbol < (forcing
an 8-bit value).

The encoding of the instruction includes only the
actual address value, and not any of the calculation
done to initially obtain it.

Register indexed addressing accesses 8-, 16-, or 32-
bit data, based on the instruction.

The assembler automatically selects a 5-bit or 8-bit
offsets based on the offset value.

Source Forms: ea,r ;indexed form
<ea,r ;indexed form

EA Calculation: m <- r + (signed)ea

Description: The register indexed addressing mode takes a 1-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX 32,X ;Load X from address X+32

Post-Bytes: $M8JJ (M = address register; 8=X, A=Y, C=U, E=S)

JJ is the signed 8-bit offset to the operand.

Reg. Indexed (8- Offset + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-26

Comments: The source form address ea may be any expression that produces an
8-bit result, or any expression preceded by the symbol < (forcing
an 8-bit value).

The encoding of the instruction includes only the
actual address value, and not any of the calculation
done to initially obtain it.

Register indexed addressing accesses 8-, 16-, or 32-
bit data, based on the instruction.

The assembler automatically selects a 5-bit or 8-bit
offsets based on the offset value.

Source Forms: >ea,r ;indexed form

EA Calculation: m <- r + ea

Description: The register indexed addressing mode takes a 2-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of the operand.

Examples: LDX $1000,X ;Load X from address X+$1000
LDD $1000,W ;Load D from address W+$1000

Post-Bytes: $M9JJKK (M = address register; 8=X, A=Y, C=U, E=S)
$AFJJKK (register W)

JJ is the most-significant byte, and KK is the least-
significant byte, of the signed 16-bit offset to the operand.

Reg. Indexed (16- Offset + Register Points to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-27

Comments: The source form address ea may be any expression that produces a
16-bit result or any expression preceded by the symbol > (forcing a
16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Register indexed addressing accesses 8-, 16-, or 32-bit data, based
on the instruction.

Source Forms: [,r] ;indexed form

EA Calculation: m <- (r)

Description: The register indirect addressing mode uses the value stored in register
r, as the address of a 16-bit pointer to the operand.

Examples: LDX [,X] ;Load X from pointer at address stored in X
LDS [,W] ;Load S from pointer at address stored in W

Post-Bytes: $M4 (M = address register; 9=X, B=Y, D=U, F=S)
$90 (register W)

Reg. Indirect Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-28

Comments: Register indirect addressing accesses 8-, 16-, or 32-bit data, based on
the instruction.

The assembler automatically selects this addressing mode when the
offset value is zero and no < or > symbol appears in the source form.

Source Forms: [A,r] ;indexed form

EA Calculation: m <- (r + (signed)A)

Description: The A accumulator indirect addressing mode takes a 1-byte value from
the A register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [A,X] ;Load X from address stored at address X+A

Post-Bytes: $M6 (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (A) A + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-29

Comments: A accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [B,r] ;indexed form

EA Calculation: m <- (r + (signed)B)

Description: The B accumulator indexed addressing mode takes a 1-byte value from
the B register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [B,X] ;Load X from address stored at address X+B

Post-Bytes: $M5 (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (B) B + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-30

Comments: B accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [D,r] ;indexed form

EA Calculation: m <- (r + D)

Description: The D accumulator indexed addressing mode takes a 2-byte value from
the D register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [D,X] ;Load X from address stored at address X+D

Post-Bytes: $MB (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (D) D + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-31

Comments: D accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [E,r] ;indexed form

EA Calculation: m <- (r + (signed)E)

Description: The E accumulator indirect addressing mode takes a 1-byte value from
the E register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [E,X] ;Load X from address stored at address X+E

Post-Bytes: $M7 (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (E) E + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-32

Comments: E accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [F,r] ;indexed form

EA Calculation: m <- (r + (signed)F)

Description: The F accumulator indirect addressing mode takes a 1-byte value from
the F register, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [F,X] ;Load X from address stored at address X+F

Post-Bytes: $MA (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (F) F + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-33

Comments: A accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [W,r] ;indexed form

EA Calculation: m <- (r + W)

Description: The W accumulator indexed addressing mode takes a 2-byte value
from the W register, advancing the program counter past the post-
bytes after instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [D,X] ;Load X from address stored at address X+D

Post-Bytes: $ME (M = address register; 9=X, B=Y, D=U, F=S)

Reg. Indirect (W) W + Register Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-34

Comments: W accumulator indirect addressing accesses 8-, 16-, or 32-bit data,
based on the instruction.

Source Forms: [ea,r] ;indexed form
[<ea,r] ;indexed form

EA Calculation: m <- (r + (signed)ea)

Description: The register indirect addressing mode takes a 1-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [32,X] ;Load X from address stored in 32,X

Post-Bytes: $M8JJ (M = address register; 9=X, B=Y, D=U, F=S)

JJ is the signed 8-bit offset to the 16-bit address of the
operand.

Reg. Indirect (8- Offset + Reg. Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-35

Comments: The source form address ea may be any expression that produces an
8-bit result, or any expression preceded by the symbol < (forcing an 8-
bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Register indirect addressing accesses 8-, 16-, or 32-bit data, based on
the instruction.

Source Forms: [>ea,r] ;indexed form

EA Calculation: m <- (r + ea)

Description: The register indirect addressing mode takes a 2-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in register r,
to calculate the address of a 16-bit pointer to the operand.

Examples: LDX [$1000,X] ;Load X from address stored in $1000,X
LDQ [$1000,W] ;Load Q from address stored in $1000,W

Post-Bytes: $M9JJKK (M = address register; 9=X, B=Y, D=U, F=S)
$B0JJKK (register W)

JJ is the most-significant byte, and KK is the least-
significant byte, of the signed 16-bit offset to the 16-bit

Reg. Indirect (16- Offset + Reg. Points to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-36

Comments: The source form address ea may be any expression that produces a
16-bit result or any expression preceded by the symbol > (forcing a
16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Register indirect addressing accesses 8-, 16-, or 32-bit data, based on
the instruction.

Source Forms: [ea,PCR] ;indexed form

EA Calculation: m <- (PC + sizeof(basic instruction) + (signed)ea + 1)

Description: The relative indirect addressing mode takes a 1-byte value from the
post-byte(s), advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in the PC
register, to calculate the address of a 16-bit pointer to the operand.

An offset value of $00 would indicate that the address of the operand is
stored in the word at the memory location immediately following the
complete instruction.

Examples: LDX [PNTR,PCR] ;Load X from address stored in PNTR,PCR

Post-Bytes: $9CJJ

Where JJ is the signed 8-bit offset to the 16-bit address of
the operand.

Rel. Indirect (8- PC-Relative Offset to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-37

Comments: The source form address ea may be any expression that produces an
8-bit result or any expression preceded by the symbol < (forcing an 8-
bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Relative indirect addressing accesses 8-, 16-, or 32-bit data, based on
the instruction.

Source Forms: [>ea,PCR] ;indexed form

EA Calculation: m <- (PC + sizeof(basic instruction) + ea + 2)

Description: The relative indirect addressing mode takes a 2-byte value from the
post-bytes, advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in the PC
register, to calculate the address of a 16-bit pointer to the operand.

An offset value of $0000 would indicate that the address of the operand
is stored in the word at the memory location immediately following the
complete instruction.

Examples: LDX [>PNTR,PCR] ;Load X from address stored in PNTR,PCR

Post-Bytes: $9DJJKK

Where JJ is the most-significant byte, and KK is the least-
significant byte, of the signed 16-bit offset to the 16-bit
address of the operand.

Rel. Indirect (16- PC-Relative Offset to Pointer to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-38

Comments: The source form address ea may be any expression that produces an
8-bit result or any expression preceded by the symbol > (forcing a 16-
bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Relative indirect addressing accesses 8-, 16-, or 32-bit data, based on
the instruction.

Source Forms: ea ;branch form
ea,PCR ;indexed form

EA Calculation: m <- PC + sizeof(basic instruction) + (signed)ea + sizeof(post-bytes)

Description: The relative addressing mode takes a 1-byte value from the post-
byte(s), advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in the PC
register, to calculate the address of the operand. An offset value of $00
would indicate the memory location immediately following the complete
instruction.

Examples: BRA EXIT ;Branch to address ‘EXIT’
LDA TEMP,PCR ;Load A from TEMP
 ; (using TEMP’s offset relative to the
 ; program counter)

Post-Bytes: $JJ (branch form only)
$8CJJ (indexed form only)

Where JJ is the signed 8-bit offset to the operand.

Relative (8-Bit) PC-Relative Offset to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-39

Comments: The address ea in the source form may be any expression that
produces an 8-bit result or any expression preceded by the symbol <
(forcing an 8-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Relative addressing accesses 8-, 16-, or 32-bit data, based on the
instruction.

Source Forms: ea ;branch form
ea,PCR ;indexed form

EA Calculation: m <- PC + sizeof(basic instruction) + ea + sizeof(post-bytes)

Description: The relative addressing mode takes a 2-byte value from the post-
byte(s), advancing the program counter past the post-bytes after
instruction execution.

The value is used as a signed offset from the value stored in the PC
register, to calculate the address of the operand. An offset value of
$0000 would indicate the memory location immediately following the
complete instruction.

Examples: LBRA EXIT ;Long ranch to address ‘EXIT’
LDA >TEMP,PCR ;Load A from TEMP
 ; (using TEMP’s offset relative to the
 ; program counter)

Post-Bytes: $JJKK (branch form only)
$8DJJKK (indexed form only)

Where JJ is the most-significant byte, and KK is the least-
significant byte, of the signed 16-bit offset to the operand.

Relative (16-Bit) PC-Relative Offset to Operand

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

2-40

Comments: The address ea in the source form may be any expression that
produces a 16-bit result or any expression preceded by the symbol >
(forcing a 16-bit value).

The encoding of the instruction includes only the actual address value,
and not any of the calculation done to initially obtain it.

Relative addressing accesses 8-, 16-, or 32-bit data, based on the
instruction.

SECTION 3
INSTRUCTION REFERENCE

3.1 INTRODUCTION

This section describes each of the instructions of the 6309 processor. Each description
includes 10 fields:

Mnemonic A 2-5 character symbol for the instruction. The Mnemonic
for each instruction is printed inside the rounded box at the
upper left of its page.

Synopsis A brief summary of what the instruction does. The
Synopsis for each instruction is printed along the line at the
top of its page.

Source Forms The way the instruction is written in 6309 assembly
language. This item uses symbols to represent variable
portions of the instruction.

Operation A symbolic, formal description of the instruction’s operation.

Condition Codes Itemizes the effect that the instruction has on each bit of the
condition code register (register CC).

Description Text describing the operation and operands of the
instruction.

Addressing Modes A list of the addressing modes allowed for the instruction.

Comments Additional information about special considerations when
using this instruction.

Examples A short assembly language program fragment illustrating
the use of the instruction.

Encoding A definition of the machine-language (hexadecimal)
encoding of the instruction as it must be stored in memory.

3.2 SOURCE FORMS FIELD NOTATION

The Source Forms field of each description uses the mnemonic and other symbols to

3-1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

memory.

3.2 SOURCE FORMS FIELD NOTATION

The Source Forms field of each description uses the mnemonic and other symbols to
describe how a programmer would code the instruction assembly language.

Upper-case letters and punctuation marks represent literal parts of the assembly language
instruction. For example, the notation:

ABX

means that this assembly language instruction consists of the letters A, B, and X in
sequence. A space represents one or more “white space” characters, which may be any
combination of spaces and tabs.

Lower-case letters represent variable portions of the instruction. The programmer must
replace lower-case letters occurring in Source Forms section with appropriate descriptions
of the instruction’s operands. The Description and Encoding sections provide information
about valid operands for each instruction. In addition, each lower-case symbol identifies the
general type of an operand according to the following table:

S y m b o l M e a n i n g
r Any 1- character register name valid for this instruction (e.g. A)
rr, r1, r2 Any 1- or 2-character register name valid for this instruction (e.g. DP)
n, k A numeric constant (3–8 bits, depending on the instruction). The

programmer can use a predefined named constant instead of a
number.

qq A direct page (8-bit) constant memory address
p Any valid operand for immediate, extended, direct, or indexed

addressing modes (e.g. [3,X])
pp Any valid operand for extended, direct, or indexed addressing

modes (e.g. [3,X])
id A signed constant displacement (8-bit or 16-bit depending on the

instruction) relative to the address immediately following the last byte
of this instruction’s machine language encoding.

ea An “effective address”, which is allowed to be any valid operand for
extended, direct, or indexed addressing modes (e.g. [3,X])

rl A list of 1- or 2-character register names, separated only by commas
(e.g. SP,D,X,Y)

From the table and the description of SUB, we find that:

3-2

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

From the table and the description of SUB, we find that:

SUBD #$3000

is an assembly language instruction that fits the Source Forms description:

SUBr p

In this example, we have replaced ‘r’ with ‘D’ (for the D register), and ‘p’ with ‘#$3000’ (for
immediate addressing, constant value $3000) to obtain the actual assembly language
instruction.

3.3 OPERATION FIELD NOTATION

The Operation item of each description tells what the instruction does when executed.

Each 6309 instruction performs a different operation when executed, but all of the
operations follow a general pattern: whatever the operation, it modifies some combination
of internal registers, external memory, and the processor’s internal controls. The Operation
item of each description uses symbols to describe these modifications. The Table explains
the meaning of each symbol:

S y m b o l M e a n i n g
<- Assignment; the entity on the left of this symbol is assigned (”takes

on”) the value of the expression on right of this symbol.
‘ Placed after a register name or memory address, indicates “after

execution”. When this symbol is not present, the description refers
to “before execution”. (e.g. A’<-B means “A after execution takes
on the value of B before execution”).

(unsigned) Placed before a register name, this symbol indicates that the 6309
treats the value of the register as an unsigned number when
converting it from 8 bits to 16 bits (e.g. X’<-(unsigned)B means “X
after execution takes on the unsigned value of B before execution”).

~ Placed before an expression, indicates the one’s complement of the
expression.

+, -, *, /, % Addition, subtraction, multiplication, division, or division remainder of
the expressions on the left and right sides of the symbol.

&, |, ^ Bit-wise AND, OR or Exclusive-OR of the expressions on the left and
right sides of the symbol.

>>, << Shift the expression on the left by the number of bits indicated by the
expression on the right. >> indicates a shift to the right, while <<

3-3

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

>>, << Shift the expression on the left by the number of bits indicated by the
expression on the right. >> indicates a shift to the right, while <<
indicates a shift to the left.

=, <> Compares the expressions on the right and left for equal (=) or not
equal (<>).

. Indicates a single bit of the expression on the left, selected by the
expression on the right (e.g. B.5’ means “bit 5 of B after
execution”). The expression on the right may also be the 1-character
name of a condition code register bit (e.g. CC.C means “the carry bit
before execution”).

: Indicates a number formed from the expression on the left and the
expression on the right, by joining them together (e.g. $33:$47 is
the same as $3347)

[…] Used to group together an enclosed expression; or list of
expressions; no operation.

(…) The value of the memory location(s) accessed by using the enclosed
expression as an address.

sizeof(…) The size, in bytes, of the register named in the parenthesis (e.g.
sizeof(D) is 2, and sizeof(A) is 1).

r, rr, r1, r2 The value of a register, identified with the same symbol in the Source
Forms item of the instruction description.

z An individual register selected from a list of registers specified in the
instruction.

m, ea The address specified by the instruction’s addressing mode
operand. Usually used with (...) (e.g. (m))

n, k, qq, id The value of a numeric constant, identified with the same symbol in
the Source Forms item of the instruction description.

A, B, E, F, The value of a specific register.
D, W, X, Y, U
CC, DP, SP,
PC, MD, Q
; Marks the end of one operation and the beginning of another,

performed by the same instruction.
{or for (m)} Used in descriptions of instructions that can manipulate either a

register or a memory location. Indicates that the given description is
for register manipulation; the description for memory manipulation is
identical, with every instance of the symbol r replaced by the symbol
(m).

3.4 CONDITION CODES FIELD

The Condition Codes field of each description shows the effect of the instruction on the
6309’s condition code register (CC). This field describes the effect on each bit individually.
For each bit of the condition code register, this field gives either a brief description or “N/C”
(not changed).

3.5 ENCODING FIELD

3-4

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

hexadecimal values (6309 machine language). If you’re using an assembler program, you’ll
probably never need to know the encoding of individual instructions. The information in this
field is provided for debugging, hand-coding, and special-purpose applications.

For instructions that use the INHERENT addressing mode, the field lists a literal
hexadecimal number (e.g. $3A for the ABX instruction). When an instruction allows several
addressing modes, the Encoding field provides an encoding rule instead of a literal
hexadecimal number.

Instructions that allow several addressing modes are encoded differently, depending on the
addressing mode. Only the portions of the encoding that specify the instruction and its
addressing mode are included in this field; the 6309 uses standard encoding for the
instruction’s operands given a specific addressing mode. The notation (+ post-bytes) in
the Encoding field indicates that the rest of the instruction’s encoding follows the standard
6309 format for the specified addressing mode, and that the operands immediately follow
the given encoding in memory.

Refer to Section 2, Addressing Modes, for additional information.

(This page intentionally left blank)

3-5

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

(This page intentionally left blank)

3-6

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Source Forms: ABX

Operation: X’ <- X + (unsigned)B

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Adds the contents of the B register to the contexts of the X register, and
stores the result in the X register. The contents of the B register are
treated as an unsigned 8-bit value.

Addressing Modes: Inherent

Comments: Because this instruction treats B as an unsigned number, it can be used
to change the value of the X register by +0 to +255. The similar LEAX
B,X instruction changes the value of X by -128 to +127, and also
updates the Z bit of the condition code register.

Examples: LDX #TABLE ;Set up X to point at table
ABX ;Advance X by the value in B
LDA 0,X ;Get a value from table

Encoding: $3A

ABX Add Register B to Register X

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-7

Source Forms: ADCr p

Operation: r’ <- r + (m) + CC.C

H’ –1 if half-carry generated

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of the memory byte, plus the carry bit of the
condition code register, to the contents of the A or B register. The result
is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for multi-precision addition, since it allows the
carry from a previous byte or word addition to be added into a
subsequent byte addition.

Examples: ADDB #3 ;Add to B register - could create a carry
ADCA #0 ;Now the D register has been incremented by 3

Encoding: $X9 (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

ADC (8- Add Memory Contents Plus Carry to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-8

Source Forms: ADCr p

Operation: r’ <- r + (m) + CC.C

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of the memory word, plus the carry bit of the
condition code register, to the contents of the specified register. The
result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for multi-precision addition, since it allows the
carry from a previous byte or word addition to be added into a
subsequent word addition.

Examples: ADDE 3,S ;Add value on stack to E register
ADCD #0 ;Accumulate 24 bit result in A.B.E registers

Encoding: $10X9 (+ post-bytes) Register D

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

ADC(16- Add Memory Contents Plus Carry to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-9

Source Forms: ADCR r1,r2

Operation: r2’ <- r2 + r1 + CC.C

H’ –N/C (unless r2 = CC)

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of two registers, plus the carry bit, and stores the
result in the second register. The post-byte of this instruction identifies
the two registers to be added. The post-byte consists of two 4-bit
codes, each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: COMB ;Force carry bit set
LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
ADCR X,Y ;Now X still has $1234 and Y has $579C

Encoding: $1031XY

X = first register, Y = second register (gets result) from
table above

ADCR Add Register Contents Plus Carry to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-10

Source Forms: ADDr p

Operation: r’ <- r + (m)

H’ –1 if half-carry generated

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of the memory byte to the contents of the specified
register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for single-precision addition, or for the first
byte of multi-precision addition, since it allows adding two quantities
ignoring any carry left over from previous operations.

Examples: LDA ,X ;Get a value from memory
ADDA <OFFSET ;Add predetermined offset from OFFSET

Encoding: $XB (+ post-bytes) Register A or B
$11XB (+ post bytes) Register E* or F*

X = register and mode. For register A or E, 8=immediate,
9=direct, A=indexed, B=extended. For register B or F,

ADD(8- Add Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-11

Source Forms: ADDD p
ADDW p

Operation: r’ <- r + (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of the memory word to the contents of the specified
register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for single-precision addition, or for the first
word of multi-precision addition, since it allows adding two quantities
ignoring any carry left over from previous operations.

Examples: LDW ,X ;Get a value from memory
ADDW <OFFSET ;Add predetermined offset from OFFSET

Encoding: $X3 (+ post-bytes) Register D
$11XB (+ post-bytes) Register W

X = addressing mode. For register D, C = immediate, D =
direct, E = indexed, F = extended. For register W*, 8 =

ADD(16- Add Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-12

Source Forms: ADDR r1,r2

Operation: r2’ <- r2 + r1

H’ –N/C (unless r2 = CC)

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Adds the contents of two registers, and stores the result in the second
register. The post-byte of this instruction identifies the two registers to
be added. The post-byte consists of two 4-bit codes, each of which
identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
ADDR X,Y ;Now X still has $1234 and Y has $579B

Encoding: $1030XY

X = first register, Y = second register (gets result) from
table above

ADDR Add Register Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-13

Source Forms: AIM #n,pp

Operation: (m)’ <- (m) & n

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise ANDs the 8-bit contents of the addressed memory location
with the 8-bit immediate data, and stores the result at the memory
location.

Addressing Modes: Direct
Indexed
Extended

Comments: This instruction executes an indivisible read-modify-write cycle.

Examples: AIM #$7F,<FLAGS ;Clear the most-significant bit of FLAGS

Encoding: $X2YY (+ post-bytes for addressing mode)
X = addressing mode (0 = direct, 6 = indexed, 7 = extended);
YY = immediate data

AIM AND Immediate Data to Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-14

Source Forms: ANDr p

Operation: r’ <- r & (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise ANDs the contents of the memory byte to the contents of the
specified register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively clears bits of the specified register. For every
clear bit in the operand, the instruction clears the corresponding register
bit. The instruction does not change register bits corresponding to set
bits in the operand.

Examples: LDA ,X ;Get a value from memory
ANDA #$7F ;Strip the most-significant bit from the value

Encoding: $X4 (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

AND(8- Bit-Wise AND Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-15

Source Forms: ANDr p

Operation: r’ <- r & (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise ANDs the contents of the memory word to the contents of the
specified 16-bit register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively clears bits of the specified register. For every
clear bit in the operand, the instruction clears the corresponding register
bit. The instruction does not change register bits corresponding to set
bits in the operand.

Examples: LDD ,X ;Get a 16-bit value from memory
ANDA #$7FFF ;Strip the most-significant bit from the value

Encoding: $10X4 (+ post-bytes) Register D*

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

AND(16- Bit-Wise AND Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-16

Source Forms: ANDCC #n

Operation: CC’ <- CC & n

H’ –H & n.5

N’ –N & n.3

Z’ – Z & n.2

V’ –V & n.1

C’ –C & n.0

Description: Bit-wise ANDs the 8-bit contents of the condition code register with the
8-bit immediate data, and stores the result in the condition code register.

Addressing Modes: Immediate (8-Bit)

Comments: The ANDCC instruction may be used to clear any desired bits into the
condition code register. ANDCC is most often used to clear the F and I
bits, to reenable hardware interrupts after executing a critical section of a
program. It is also used to clear the carry bit CC.C.

Examples: ANDCC #$AF ;Enable IRQ and FIRQ interrupts

Encoding: $1CNN

NN = immediate data to AND into condition code register.

ANDCC AND Immediate Data to Condition Code Register

Condition Codes: E’ –

F’ –

 I’ –

E & n.7

F & n.6

I & n.4

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-17

Source Forms: ANDR r1,r2

Operation: r2’ <- r2 & r1

H’ –N/C (unless r2 = CC)

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise ANDs the contents of two registers, and stores the result in the
second register. The post-byte of this instruction identifies the two
registers to be ANDed. The post-byte consists of two 4-bit codes,
each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
ANDR X,Y ;Now X still has $1234 and Y has $0024

Encoding: $1034XY

X = first register, Y = second register (gets result) from
table above

ANDR AND Register Contents with Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-18

Source Forms: ASLr
ASL pp

Operation: r’ <- r + r; r.0’ <- 0; CC.C’ <- r.7; CC.V’ <- r.7 ^ r.6; {or for (m)}

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Doubles the value of the specified operand by shifting it left one
position. The most-significant bit of the original operand is copied to the
carry bit (C) of the condition code register. The least-significant bit of the
result is forced to 0.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction shifts the contents of a
register.

This instruction is identical to the LSL instruction, described elsewhere.

Examples: LDB #$0F ;Now B has $0F
ASLB ;Now B has $1E, C, V clear

Encoding: $X8 Register A or B
X = register. For register A, X=4. For Register B, X=5.

$X8 (+ post-bytes) Memory
X = mode; 0=direct, 6=indexed, 7=extended.

ASL(8- Multiply the Signed Operand by Two

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-19

Source Forms: ASLr

Operation: r’ <- r + r; r.0’ <- 0; CC.C’ <- r.15; CC.V’ <- r.15 ^ r.14

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Doubles the value of the specified operand by shifting it left one
position. The most-significant bit of the original operand is copied to the
carry bit (C) of the condition code register. The least-significant bit of the
result is forced to 0.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent

Comments: This instruction is identical to the LSL instruction, described elsewhere.

Examples: LDD #$00FF ;Now D has $00FF
ASLD ;Now D has $01FE, C, V clear (ASLD for 6309 0nly)

Encoding: $1XX8 Register D

XX = register. For register D, XX=04. For register W, XX=05

ASL(16- Multiply the Signed Operand by Two

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-20

Source Forms: ASRr
ASR pp

Operation: r’ <- r >> 1; r.7’ <- r.7; CC.C’ <- r.0; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Divides the specified operand by two, treating the operand as a 2’s
complement signed number. The least-significant bit of the original
operand is copied to the carry bit (C) of the condition code register. The
most-significant bit of the original operand is copied to the most-
significant bit of the result to preserve the sign of the result.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: This instruction differs slightly from LSR. While LSR places a zero in the
most-significant bit of the result, ASR preserves the sign of the original
operand.

Examples: LDA #$8F ;Now A has $8F
ASRA ;Now A has $C7, C is set

Encoding: $X7 Register A or B
X = register. For register A, X=4. For Register B, X=5.

$X7 (+ post-bytes) Memory
X = mode; 0=direct, 6=indexed, 7=extended.

ASR(8- Divide the Signed Operand by Two

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-21

Source Forms: ASRr

Operation: r’ <- r >> 1; r.15’ <- r.15; CC.C’ <- r.0

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Divides the specified register by two, treating the operand as a 2’s
complement signed number. The least-significant bit of the original
operand is copied to the carry bit (C) of the condition code register. The
most-significant bit of the original operand is copied to the most-
significant bit of the result to preserve the sign of the result.

Addressing Modes: Inherent

Comments: This instruction differs slightly from LSR. While LSR places a zero in the
most-significant bit of the result, ASR preserves the sign of the original
operand.

Examples: LDD #$80FF ;Now D has $80FF
ASRD ;Now D has $C07F, C is set (ASRW for 6309 0nly)

Encoding: $1XX7 Register D only

XX = register. For register D, XX=04. For register W, XX=05

ASR(16- Divide the Signed Operand by Two

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-22

Source Forms: BAND rr.n,qq.k

Operation: rr.n’ <- (DP:qq).k & rr.n

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: ANDs bit (k) of 8-bit direct page memory location (qq) with bit (n) of
register (rr), storing the result in bit (n) of the register. The memory
location and other bits of the register are not modified. Two bits in the
post-byte specify the register, three bits specify the memory location
bit number, and three bits specify the register bit number. The register
(rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BAND A.7,FLAGS.2 ;Set bit 7 of register A to the AND of
;itself and bit 2 of direct page FLAGS

BAND CC.I,FLAGS.3 ;Clear CC.I if bit 3 of FLAGS not set

Encoding: $1130XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BAND AND Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-23

Source Forms: BCC id

Operation: if (CC.C=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C)
bit is clear.

Behaves like BRN (branch never) if the condition code carry (CC.C) bit
is set.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BCC stands for
“branch if carry clear”. This instruction is identical to BHS. The opposite
instruction is BCS. See also LBCC.

Examples: LSRA ;Get LSB of A to carry
BCC EXIT ;go to ‘EXIT’ if LSB of A was clear
. ; we’d be here if LSB of A was set

Encoding: $24XX

XX = relative offset.

BCC Set PC If CC Carry Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-24

Source Forms: BCS id

Operation: if (CC.C=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C)
bit is set.

Behaves like BRN (branch never) if the condition code carry (CC.C) bit
is clear.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BCS stands for
“branch if carry set”. This instruction is identical to BLO. The opposite
instruction is BCC. See also LBCS.

Examples: LSRA ;Get LSB of A to carry
BCS EXIT ;go to ‘EXIT’ if LSB of A was set
. ; we’d be here if LSB of A was clear

Encoding: $25XX

XX = relative offset.

BCS Set PC If CC Carry Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-25

Source Forms: BEOR rr.n,qq.k

Operation: rr.n’ <- (DP:qq).k ^ rr.n

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: Exclusive-ORs bit (k) of 8-bit direct page memory location (qq) with bit
(n) of register (rr), storing the result in bit (n) of the register. The memory
location and other bits of the register are not modified. Two bits in the
post-byte specify the register, three bits specify the memory location
bit number, and three bits specify the register bit number. The register
(rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BEOR A.7,FLAGS.2 ;Set bit 7 of register A to the XOR of
 ;itself and bit 2 of FLAGS
ORCC #1 ;Force carry set
BEOR CC.C,FLAGS.3 ;Flip carry bit if bit 3 of FLAGS set

Encoding: $1134XXYY
XX = post-byte (RRkkknnn); Y = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BEOR Exclusive-OR Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-26

Source Forms: BEQ id

Operation: if (CC.Z=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the most recent arithmetic
operation left the condition code zero (CC.Z) bit set. This generally
indicates that the result of the last signed or unsigned arithmetic operation
was zero.

Behaves like BRN (branch never) if the most recent arithmetic operation
left the condition code zero (CC.C) bit clear. This generally indicates that
the result of the last signed or unsigned arithmetic operation was non-
zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BEQ stands for
“branch if equal”. The opposite instruction is BNE. See also LBEQ.

Examples: LDA #$50
SUBA #$50
BEQ EXIT ;Now A=$00; $50 is “equal” to $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$43

Encoding: $27XX

XX = relative offset.

BEQ Set PC If CC Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-27

Source Forms: BGE id

Operation: if (CC.N = CC.V) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) and overflow (CC.V) bits match. This generally indicates that
the result of the last signed arithmetic operation was “greater than or
equal to” zero.

Behaves like BRN (branch never) if the condition code negative
(CC.N) and overflow (CC.V) bits differ. This generally indicates that the
result of the last signed arithmetic operation was “less than” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BGE stands for
“branch if greater or equal”. The opposite instruction is BLT. See also
LBGE.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
BGE MORE ;go to ‘MORE’ - result is greater.
. ; continue here.

Encoding: $2CXX

XX = relative offset.

BGE Set PC If CC Greater or Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-28

Source Forms: BGT id

Operation: if (CC.N=CC.V and CC.Z=0) then PC’ <- PC+id+2; else PC’ <-
PC+2
H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) and overflow (CC.V) bits match, and the zero bit (CC.Z) is
clear. This generally indicates that the result of the last signed arithmetic
operation was “greater than” zero.

Behaves like BRN (branch never) if the condition code negative
(CC.N) and overflow (CC.V) bits differ, or if the zero (CC.Z) bit is set.
This generally indicates that the result of the last signed arithmetic
operation was “less than or equal to” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BGT stands for
“branch if greater than”. The opposite instruction is BLE. See also
LBGT.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
BGT MORE ;go to ‘MORE’ - result is greater.
. ; continue here.

Encoding: $2EXX

XX = relative offset.

BGT Set PC If CC Greater (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-29

Source Forms: BHI id

Operation: if (CC.C=0 and CC.Z=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C)
and zero (CC.Z) bits are clear. This generally indicates that the result of
the last unsigned arithmetic operation was “higher than” zero.

Behaves like BRN (branch never) if the condition code carry (CC.C) or
zero (CC.Z) bit is set. This generally indicates that the result of the last
unsigned arithmetic operation was “lower than or same as” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BHI stands for
“branch if higher”. The opposite instruction is BLS. See also LBHI.

Examples: LDA #$80
SUBA #$50
BHI EXIT ;Now A=$30; $80 is “higher” than $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$90

Encoding: $22XX

XX = relative offset.

BHI Set PC If CC Higher (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-30

Source Forms: BHS id

Operation: if (CC.C=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C)
bit is clear. This generally indicates that the result of the last unsigned
arithmetic operation was “higher than or same as” zero.

Behaves like BRN (branch never) if the condition code carry (CC.C) bit
is set. This generally indicates that the result of the last unsigned
arithmetic operation was “lower than” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BHS stands for
“branch if higher or same”. This instruction is identical to BCC. The
opposite instruction is BLO. See also LBHS.

Examples: LDA #$50
SUBA #$50
BHS EXIT ;Now A=$00; $50 is “same” as $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$90

Encoding: $24XX

XX = relative offset.

BHS Set PC If CC Higher or Same (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-31

Source Forms: BIAND rr.n,qq.k

Operation: rr.n’ <- ~[(DP:qq).k] & rr.n

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: ANDs the inverse of bit (k) of 8-bit direct page memory location (qq),
with bit (n) of register (rr), storing the result in bit (n) of the register. The
memory location and other bits of the register are not modified. Two bits
in the post-byte specify the register, three bits specify the memory
location bit number, and three bits specify the register bit number. The
register (rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BIAND A.7,FLAGS.2 ;Set bit 7 of register A to the AND of
 ;itself and the inverse of bit 2 of FLAGS
ORCC #1 ;Force carry set
BIAND CC.C,FLAGS.3 ;Clear carry bit if bit 3 of FLAGS set

Encoding: $1131XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BIAND AND Inverse Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-32

Source Forms: BIEOR rr.n,qq.k

Operation: rr.n’ <- ~[(DP:qq).k] ^ rr.n; if rr=CC, n=C bit

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: Exclusive-ORs the inverse of bit (k) of 8-bit direct page memory
location (qq), with bit (n) of register (rr), storing the result in bit (n) of the
register. The memory location and other bits of the register are not
modified. Two bits in the post-byte specify the register, three bits
specify the memory location bit number, and three bits specify the
register bit number. The register (rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BIEOR A.7,FLAGS.2 ;Set bit 7 of register A to the XOR of
 ;itself and the inverse of bit 2 of FLAGS
ANDCC #$AF ;Force carry clear
BIEOR CC.C,FLAGS.3 ;Set carry bit if bit 3 of FLAGS set

Encoding: $1135XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BIEOR Exclusive-OR Inverse Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-33

Source Forms: BIOR rr.n,qq.k

Operation: rr.n’ <- ~[(DP:qq).k] | rr.n

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: ORs the inverse of bit (k) of 8-bit direct page memory location (qq),
with bit (n) of register (rr), storing the result in bit (n) of the register. The
memory location and other bits of the register are not modified. Two bits
in the post-byte specify the register, three bits specify the memory
location bit number, and three bits specify the register bit number. The
register (rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BIOR A.7,FLAGS.2 ;Set bit 7 of register A to the OR of
 ;itself and the inverse of bit 2 of FLAGS
ANDCC #$AF ;Force carry clear
BIOR CC.C,FLAGS.3 ;Set carry bit if bit 3 of FLAGS not set

Encoding: $1133XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BIOR OR Inverse Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-34

Source Forms: BITr p

Operation: r & (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise ANDs the contents of the memory byte with the contents of
the specified register. The condition code register is updated according
to the result, and the result is discarded.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction is generally used to determine whether certain bits of a
value are 1 or 0.

Examples: LDA ,X ;Get a value from memory
BITA #$40 ;See if 2nd MSB of the value is set
BNE IS_SET ;Branch if the bit is set

Encoding: $X5 (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

BIT(8- Bit-Wise AND Memory Contents with Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-35

Source Forms: BITr p

Operation: r & (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise ANDs the contents of the memory word with the 16-bit
contents of the specified register. The condition code register is updated
according to the result, and the result is discarded.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction is generally used to determine whether certain bits of a
value are 1 or 0.

This is a new instruction for the 6309 and 6309E only.

Examples: LDD ,X ;Get a 16-bit value from memory
BITD #$0480 ;See if either of two specified bits is set
BNE IS_SET ;Branch if either bit is set

Encoding: $10X5 (+ post-bytes) Register D

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

BIT(16- Bit-Wise AND Memory Contents with Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-36

Source Forms: BITMD #n

Operation: MD & n

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise ANDs MD register contents with the 8-bit immediate data, and
sets the condition code register based on the result. The MD register is
not modified, but bits 6 and 7 are cleared. The Table lists the immediate
values used to test specific bits of the MD register.

01000000 Illegal instruction TRAP flag; 1 = TRAP occurred
10000000 Division by 0 TRAP flag; 1 = TRAP occurred

Addressing Modes: Immediate

Comments: The HD6309 initializes the MD register to $00 at reset, for full
compatibility with the MC6809. The processor operates in Native
Mode when bit 0 of the MD register is set by the LDMD instruction.
This bit, and the FIRQ mode bit of the MD register, are write-only and
cannot be tested with the BITMD instruction.

Examples: DOTRAP BITMD #$40 ;Trap entry - see if Division by 0 TRAP
 BEQ NotBy0 ;No - must be illegal instruction TRAP
 LDMD #$00 ;Clear /0 bit, stay in emulation mode
 RTI ;Return from TRAP

Encoding: $113CXX

XX is the immediate data to be ANDed with the MD register

BITMD Bit Test MD Register With Immediate Data

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-37

Source Forms: BLE id

Operation: if (CC.N<>CC.V or CC.Z=0) then PC’ <- PC+id+2; else PC’ <-
PC+2
H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) and overflow (CC.V) bits differ, or if the zero (CC.Z) bit is set.
This generally indicates that the result of the last signed arithmetic
operation was “less than or equal to” zero.

Behaves like BRN (branch never) if the condition code negative
(CC.N) and overflow (CC.V) bits match, and the zero bit (CC.Z) is
clear. This generally indicates that the result of the last signed arithmetic
operation was “greater than” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BLE stands for
“branch if less than or equal”. The opposite instruction is BGT. See also
LBLE.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
BLE LESS ;don’t go to ‘LESS’ - result is greater.
. ; continue here.

Encoding: $2FXX

XX = relative offset.

BLE Set PC If CC Less or Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-38

Source Forms: BLO id

Operation: if (CC.C=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C)
bit is set. This generally indicates that the result of the last unsigned
arithmetic operation was “lower than” zero.

Behaves like BRN (branch never) if the most recent arithmetic operation
left the condition code carry (CC.C) bit clear. This generally indicates that
the result of the last unsigned arithmetic operation was “higher than or
same as” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BLO stands for
“branch if lower”. This instruction is identical to BCS. The opposite
instruction is BHS. See also LBLO.

Examples: LDA #$50
SUBA #$50
BLO EXIT ;Now A=$00; $50 is “same” as $50; continue
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$90

Encoding: $24XX

XX = relative offset.

BLO Set PC If CC Lower (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-39

Source Forms: BLS id

Operation: if (CC.C=1 or CC.Z=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code carry (CC.C) or
zero (CC.Z) bit is set. This generally indicates that the result of the last
unsigned arithmetic operation was “lower than or same as” zero.

Behaves like BRN (branch never) if the condition code carry (CC.C)
and zero (CC.Z) bits are clear. This generally indicates that the result of
the last unsigned arithmetic operation was “higher than” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BLS stands for
“branch if lower or same”. The opposite instruction is BHI. See also
LBLS.

Examples: LDA #$80
SUBA #$50
BLS EXIT ;Now A=$30; $80 is “higher” than $50; continue.
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$90

Encoding: $23XX

XX = relative offset.

BLS Set PC If CC Lower or Same (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-40

Source Forms: BLT id

Operation: if (CC.N <> CC.V) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) and overflow (CC.V) bits differ. This generally indicates that
the result of the last signed arithmetic operation was “less than” zero.

Behaves like BRN (branch never) if the condition code negative
(CC.N) and overflow (CC.V) bits match. This generally indicates that
the result of the last signed arithmetic operation was “greater than or
equal to” zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BLT stands for
“branch if less than”. The opposite instruction is BGE. See also LBLT.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
BLT LESS ;don’t go to ‘LESS’ - result is greater.
. ; continue here.

Encoding: $2DXX

XX = relative offset.

BLT Set PC If CC Less (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-41

Source Forms: BMI id

Operation: if (CC.N=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) bit is set. This generally indicates that the result of the last
signed arithmetic operation was negative.

Behaves like BRN (branch never) if the condition code negative
(CC.N) bit is clear. This generally indicates that the result of the last
signed arithmetic operation was positive (or zero).

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BMI stands for
“branch if minus”. The opposite instruction is BPL. See also LBMI.

Examples: LDA #-128 ;Value of -128
ADDA #200 ;Result is +72
BMI NEGTIV ;don’t go to ‘NEGTIV’ - result is positive.
. ; continue here.

Encoding: $2BXX

XX = relative offset.

BMI Set PC If CC Negative Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-42

Source Forms: BNE id

Operation: if (CC.Z=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the most recent arithmetic
operation left the condition code zero (CC.Z) bit clear. This generally
indicates that the result of the last signed or unsigned arithmetic operation
was non-zero.

Behaves like BRN (branch never) if the most recent arithmetic operation
left the condition code zero (CC.C) bit set. This generally indicates that
the result of the last signed or unsigned arithmetic operation was zero.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BNE stands for
“branch if not equal”. The opposite instruction is BEQ. See also LBNE.

Examples: LDA #$50
SUBA #$50
BNE EXIT ;Now A=$00; $50 is “equal” to $50; continue
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$43

Encoding: $26XX

XX = relative offset.

BNE Set PC If CC Not Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-43

Source Forms: BOR rr.n,qq.k

Operation: rr.n’ <- (DP:qq).k | rr.n

H’ –N/C (unless rr = CC, n=5)

N’ –N/C (unless rr = CC, n=3)

Z’ – N/C (unless rr = CC, n=2)

V’ –N/C (unless rr = CC, n=1)

C’ –N/C (unless rr = CC, n=0)

Description: ORs bit (k) of 8-bit direct page memory location (qq) with bit (n) of
register (rr), storing the result in bit (n) of the register. The memory
location and other bits of the register are not modified. Two bits in the
post-byte specify the register, three bits specify the memory location
bit number, and three bits specify the register bit number. The register
(rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: BOR A.7,FLAGS.2 ;Set bit 7 of register A to the OR of
 ;itself and bit 2 of FLAGS
ANDCC #$AF ;Force carry clear
BOR CC.C,FLAGS.3 ;Set carry bit if bit 3 of FLAGS set

Encoding: $1132XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

BOR OR Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless rr = CC, n=7)

N/C (unless rr = CC, n=6)

N/C (unless rr = CC, n=4)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-44

Source Forms: BPL id

Operation: if (CC.N=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code negative
(CC.N) bit is clear. This generally indicates that the result of the last
signed arithmetic operation was positive (or zero).

Behaves like BRN (branch never) if the condition code negative
(CC.N) bit is set. This generally indicates that the result of the last
signed arithmetic operation was negative.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BPL stands for
“branch if plus”. The opposite instruction is BMI. See also LBPL.

Examples: LDA #-128 ;Value of -128
ADDA #200 ;Result is +72
BPL POSTIV ;go to ‘POSTIV’ - result is positive.
. ; continue here if 2nd instruction was ADDA #88

Encoding: $2AXX

XX = relative offset.

BPL Set PC If CC Negative Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-45

Source Forms: BRA id

Operation: PC’ <- PC+id+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Calculates a new value for the program counter, relative to its current
value. This causes execution to continue starting from the instruction at
the new program counter value.

The 8-bit signed imediate data (id) plus 2 is added to the original value
of the program counter. This allows the BRA instruction to transfer control
to an address anywhere within +127 to -128 bytes of the instruction
immediately following the BRA.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. Use the JMP
instruction for equivalent position-dependent code.

The ‘BRA id’ instruction is equivalent to ‘JMP id,PC’, but it occupies less
memory. BRA stands for “branch always”.

Examples: BRA EXIT ;Continue execution starting at label ‘EXIT’

Encoding: $20XX

XX = relative offset.

BRA Set Next Execution Address (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-46

Source Forms: BRN id

Operation: PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction like NOP, has no effect on the processor, memory, or
peripherals.

The BRN instruction occupies two memory locations, and always takes
the same amount of time to execute. The second byte of the BRN
instruction may be any data, including a one-byte instruction.

Addressing Modes: Inherent

Comments: The BRN instruction is most often used to “branch around” an
immediately following single-byte instruction. It may also be used during
program debugging, to temporarily disable a conditional branch by
replacing it with BRN. BRN stands for “branch never”. Technically, BRN
is the opposite of BRA (”branch always”).

Examples: L0: CLRA ;Clear Reg-A
 FCB $21 ;Op-code for BRN (skip to the BNE)
L1: ASLA ;Shift Reg-A
 ADDA #$46 ;Add value $46 to either zero (L0) or 2*A (L1)

Encoding: $21XX

XX = data to be skipped.

BRN Skip One Byte

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-47

Source Forms: BVC id

Operation: if (CC.V=0) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code overflow
(CC.V) bit is clear. This generally indicates that overflow did not occur
during the last signed arithmetic operation.

Behaves like BRN (branch never) if the condition code carry (CC.C) bit
is set. This generally indicates that overflow occured during the last
signed arithmetic operation.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BVC stands for
“branch if overflow clear”. The opposite instruction is BVS. See also
LBVC.

Examples: LDA #$80 ;Value of -128
SUBA #4 ;Subtract 4 - creates an overflow!
BVC OK ;go to ‘OK’ if no overflow.
. ; handle the overflow error here

Encoding: $28XX

XX = relative offset.

BVC Set PC If CC Overflow Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-48

Source Forms: BVS id

Operation: if (CC.V=1) then PC’ <- PC+id+2; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like BRA (branch always) if the condition code overflow
(CC.V) bit is set. This generally indicates that overflow occured during
the last signed arithmetic operation.

Behaves like BRN (branch never) if the condition code carry (CC.C) bit
is clear. This generally indicates that overflow did not occur during the last
signed arithmetic operation.

Addressing Modes: Relative (8 bit)

Comments: This instruction produces position-independent code. BVS stands for
“branch if overflow set”. The opposite instruction is BVC. See also
LBVS.

Examples: LDA #$80 ;Value of -128
SUBA #4 ;Subtract 4 - creates an overflow!
BVS ERROR ;go to ‘ERROR’ if overflow.
. ; continue here if no overflow

Encoding: $29XX

XX = relative offset.

BVS Set PC If CC Overflow Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-49

Source Forms: CLRr
CLR pp

Operation: r’ <- 0; {or for (m)}

H’ –N/C

N’ –Always cleared

Z’ – Always set

V’ –Always cleared

C’ –Always cleared

Description: Clears the specified operand to the constant zero, and updates the
condition codes.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction clears the contents of a
register. Any one of the following registers may be specified by r: A, B,
E*, F*.

Examples: LDA #$0F ;Now A = $0F
... ;Assume processing here that makes A unknown
CLRA ;Clear the A register; now A=$00

Encoding: $XF (X = register; 4=A, 5=B)
$1XXF (XX = register; 14=E, 15=F)
$XF (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

CLR(8- Clear the Operand to Value 0

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-50

Source Forms: CLRr

Operation: r’ <- 0

H’ –N/C

N’ –Always cleared

Z’ – Always set

V’ –Always cleared

C’ –Always cleared

Description: Clears the specified operand to the constant zero, and updates the
condition codes.

Addressing Modes: Inherent

Comments: This instruction clears the contents of a register. Any one of the following
registers may be specified by r: D*, W*.

Examples: LDW #$00FF ;Now W = $00FF
... ;Assume processing here that makes W unknown
CLRW ;Clear the W register; now W=$0000

Encoding: $1XXF (XX = register; 04=D, 05=W)

CLR(16- Clear the Operand to Value 0

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-51

Source Forms: CMPr p

Operation: r - (m)

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if borrow, else 0

Description: Subtracts the contents of the memory byte from the contents of the
specified register. The condition code register is updated according to
the result, and the result is discarded.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: The comparison may be either signed or unsigned, depending on how
the program interprets the condition code register after executing the
CMP instruction.

Refer to the description of the BIT instruction for related information.

Examples: LDA ,X ;Get a value from memory
CMPA #$40 ;Compare value to $40 (64 decimal)
BHI BIGGER ;Branch if the unsigned value exceeds $40

Encoding: $X1 (+ post-bytes) Register A or B
$11X1 (+ post-bytes) Register E* or F*

X = register and mode. For register A or E, 8=immediate,
9=direct, A=indexed, B=extended. For register B or F,

CMP(8- Compare Register with Memory Contents

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-52

Source Forms: CMPr p

Operation: r - (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if borrow, else 0

Description: Subtracts the contents of the memory word from the 16-bit contents of
the specified register. The condition code register is updated according
to the result, and the result is discarded.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: The comparison may be either signed or unsigned, depending on how
the program interprets the condition code register after executing the
CMP instruction.

Refer to the description of the BIT instruction for related information.

Examples: LDU ,X ;Get a value from memory
CMPU #$1240 ;Compare value to constant $1240
BHI BIGGER ;Branch if the unsigned value exceeds $1240

Encoding: $XC Register X
$10XY (+ post-bytes) Register D, W*, or Y
$11XY (+ post-bytes) Register U or S

X = mode; 8=immed., 9=direct, A=indxd, B=extd. Y = reg.; 1=W,

CMP(16- Compare Register with Memory Contents

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-53

Source Forms: CMPR r1,r2

Operation: r2 - r1

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Compares the contents of r1 to r2, and sets the condition code register
according to the result. The post-byte of this instruction identifies the two
registers to be subtracted. The post-byte consists of two 4-bit codes,
each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
CMPR X,Y ;Now X still has $1234 and Y still has $4567
BHI FOO ;We’ll go to FOO now, because Y > X

Encoding: $1037XY

X = first register, Y = second register (gets result) from
table above

CMPR Compare Register to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-54

Source Forms: COMr
COM pp

Operation: r’ <- ~r; or (m)’ <- ~(m)

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –Always set

Description: Replaces the specified operand with its 1’s complement. This is the
same as inverting each bit of the operand.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction complements the
contents of a register. Any one of the following registers may be
specified by r: A, B, E*, F*

Examples: LDE #$0F ;Now E has $0F
COME ;Now E has $F0, C is set, V is cleared
 ;(6309 0nly)

Encoding: $X1 (X = register; 4=A, 5=B)
$1XX1 (XX = register; 14=E, 15=F)
$X1 (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

COM(8- Complement the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-55

Source Forms: COMr

Operation: r’ <- ~r

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –Always set

Description: Replaces the specified operand with its 1’s complement. This is the
same as inverting each bit of the operand.

Addressing Modes: Inherent

Comments: This instruction complements the contents of a register. Any one of the
following registers may be specified by r: D*, W*

Examples: LDW #$00FF ;Now W has $00FF
COMW ;Now W has $FF00, C is set, V is cleared
 ;(6309 0nly)

Encoding: $1XX1 (XX = register; 04=D, 05=W)

COM(16- Complement the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-56

Source Forms: CWAI #n

Operation: CC’ <- CC & n; CC.E’ <-1; Stack all registers; Wait for interrupt

H’ –H & n.5

N’ –N & n.3

Z’ – Z & n.2

V’ –V & n.1

C’ –C & n.0

Description: When the processor executes a CWAI instruction, no other instructions
will be executed until after the next enabled hardware interrupt. This
synchronizes the processor to the hardware interrupt. This instruction
may be executed regardless of the state of the I and F interrupt mask
bits.

While waiting for the interrupt, the processor does not place its address
and data busses in a high-impedance state. On the 6309 and 6309E,
the processor enters a low-power “sleep mode”.

Addressing Modes: Immediate

Comments: CWAI allows faster interrupt processing, since it pre-stacks the
registers. Most applications of CWAI use it to modify interrupt mask
bits CC.F and CC.I. Note that if CWAI clears CC.F, and FIRQ occurs,
the processor will have saved ALL registers (including W in Native
Mode) before entering the interrupt service routine.

Examples: CWAI #$40 ;Enable FIRQ (assume IRQ previously disabled)
 ; and wait for interrupt

Encoding: $3CNN

NN = 8-bit value to AND with condition code register

CWAI Clear Selected CC Bits and Wait For Interrupt

Condition Codes: E’ –

F’ –

 I’ –

Always 1

F & n.6

I & n.4

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-57

Source Forms: DAA

Operation: A’ <- A+cf(A,CC.C)

H’ –N/C

N’ –Set if result < 0; else clear

Z’ – Set if result 0; else clear

V’ –Undefined

C’ –See Comments, below

Description: This instruction converts the result of an 8-bit binary addition into the
result of a 2-digit BCD (binary coded decimal) addition. The conversion
value cf(A) is calculated as two 4-bit nybbles from the current values of
A and CC.C. The low nybble of cf(A) is:
 6 if (CC.C=1) or (low nybble of A > $9)
 0 otherwise
The high nybble of cf(A) is:
 6 if (CC.C=1) or (high nybble of A > $9) or
 (high nybble of A > $8 AND low nybble of A > $9)
 0 otherwise

Addressing Modes: Inherent

Comments: The DAA instruction doesn’t modify carry bit CC.C if the bit was set
prior to executing DAA. If the bit was initially clear, DAA sets or clears
carry based on the result of the addition that it performs (similarly to
ADD).

Examples: LDA #$14 ;BCD for fourteen
 ADDA #$37 ;BCD for thirty-seven; now A=$4B and CC.C=0
 DAA ;Fix up BCD number; cf(A) was $06; now A=$51

Encoding: $19

DAA Decimal Adjust Accumulator A

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-58

Source Forms: DECr
DEC pp

Operation: r’ <- r - 1; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –N/C

Description: Decrements the specified signed operand and updates the condition
codes.

Overflow occurs if the operand is $80, since decrementing this operand
produces a negative number that cannot be expressed in 8 bits.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction decrements the
contents of a register. Any one of the following registers may be
specified by r: A, B, E*, F*.

Note that DEC does not effect the carry bit.

Examples: LDE #$0 F ;Now E has $0F
DECE ;Now E has $0E (DECE for 6309 0nly)

Encoding: $XA (X = register; 4=A, 5=B)
$1XXA (XX = register; 14=E, 15=F)
$XA (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

DEC(8- Decrement the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-59

Source Forms: DECr

Operation: r’ <- r - 1

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –N/C

Description: Decrements the specified signed operand and updates the condition
codes.

Overflow occurs if the operand is $8000, since decrementing this
operand produces a negative number that cannot be expressed in 16
bits.

Addressing Modes: Inherent

Comments: This instruction decrements the contents of a register. Any one of the
following registers may be specified by r: D*, W*.

Note that DEC does not effect the carry bit.

Examples: LDW #$00FF ;Now W has $00FF
DECW ;Now W has $00FE (DECW for 6309 0nly)

Encoding: $1XXA (XX = register; 04=D, 05=W)

DEC(16- Decrement the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-60

Source Forms: DIVD p

Operation: B’ <- D / (m); A’ <- D % (m)

H’ –N/C

N’ –1 if negative, else 0

Z’ – 1 if quotient zero, else 0

V’ –1 if overflow, else 0

C’ –1 if quotient odd, else 0

Description: Divides the 16-bit signed contents of the D register (A:B) by the 8-bit
signed contents of the memory location referenced by the addressing
mode. Stores the 8-bit signed quotient in B, and the 8-bit unsigned
remainder in A.

Addressing Modes: Immediate
Direct
Indexed
Extended

Comments: In case of division by zero, this instruction generates a TRAP to the
address at vector $FFF0. The BITMD instruction must be used to
distinguish between a TRAP caused by zero division and a TRAP
caused by an illegal instruction. In the case of overflow, the V bit is set
and the contents of D are unchanged.

Examples: LDD #$3006 ;Now D has $3006
DIVD #$60 ;Divide by $60
... ;Now B has $80 (quotient), A has $06 (remainder)

Encoding: $11XD (+ post-bytes for addressing mode)

X = addressing mode (8=immed., 9=direct, A=indexed,
B=extended)

DIVD Signed Integer Divide

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-61

Source Forms: DIVQ p

Operation: W’ <- Q / (m); D’ <- Q % (m)

H’ –N/C

N’ –1 if negative, else 0

Z’ – 1 if quotient zero, else 0

V’ –1 if overflow, else 0

C’ –1 if quotient odd, else 0

Description: Divides the 32-bit signed contents of the Q register (A:B:E:F) by the
16-bit signed contents of the memory location referenced by the
addressing mode p. Stores the 16-bit signed quotient in W*, and the
16-bit unsigned remainder in D.

Addressing Modes: Immediate
Direct
Indexed
Extended

Comments: In case of division by zero, this instruction generates a TRAP to the
address at vector $FFF0. The BITMD instruction must be used to
distinguish between a TRAP caused by zero division and a TRAP
caused by an illegal instruction. In the case of overflow, the V bit is set
and the contents of Q are unchanged.

Examples: LDQ #$0456B56A ;Now Q has $0456B56A
DIVQ #$1001 ;Divide by $1001
... ;Now W has $4567, D has $0003

Encoding: $11XE (+ post-bytes for addressing mode)

X = addressing mode (8=immed., 9=direct, A=indexed,
B=extended)

DIVQ Signed Double-Precision Integer Divide

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-62

Source Forms: EIM #n,pp

Operation: (m)’ <- (m) ^ n

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise exclusive-ORs the 8-bit contents of the addressed memory
location with the 8-bit immediate data, and stores the result at the
memory location.

Addressing Modes: Direct
Indexed
Extended

Comments: This instruction executes an indivisible read-modify-write cycle.

Examples: EIM #$80,<FLAGS ;Flip the most-significant bit of FLAGS

Encoding: $X5YY (+ post-bytes for addressing mode)
X = addressing mode (0 = direct, 6 = indexed, 7 = extended);
YY = immediate data

EIM Exclusive-OR Immediate Data to Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-63

Source Forms: EORr p

Operation: r’ <- r ^ (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise Exclusive-ORs the contents of the memory byte to the
contents of the specified register. The result is stored in the specified
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively inverts bits of the specified register. For
every set bit in the operand, the instruction inverts the corresponding
register bit. The instruction does not change register bits corresponding
to clear bits in the operand.

Examples: LDA ,X ;Get a value from memory
EORA #$55 ;Invert every other bit of the value

Encoding: $X8 (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

EOR(8- Bit-Wise Exclusive-OR Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-64

Source Forms: EORr p

Operation: r’ <- r ^ (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise Exclusive-ORs the contents of the memory word to the
contents of the specified 16-bit register. The result is stored in the
specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively inverts bits of the specified register. For
every set bit in the operand, the instruction inverts the corresponding
register bit. The instruction does not change register bits corresponding
to clear bits in the operand.

Examples: LDD ,X ;Get a 16-bit value from memory
EORD #$5555 ;Invert every other bit of the value

Encoding: $10X8 (+ post-bytes) Register D*

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

EOR(16- Bit-Wise Exclusive-OR Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-65

Source Forms: EORR r1,r2

Operation: r2’ <- r2 ^ r1

H’ –N/C (unless r2 = CC)

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise exclusive-ORs the contents of two registers, and stores the
result in the second register. The post-byte of this instruction identifies
the two registers to be XORed. The post-byte consists of two 4-bit
codes, each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
EORR X,Y ;Now X still has $1234 and Y has $5753

Encoding: $1036XY

X = first register, Y = second register (gets result) from
table above

EORR Exclusive-OR Register Contents with Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-66

Source Forms: EXG r1,r2

Operation: r2’ <- r1; r1’ <- r2

H’ –N/C (unless r1 or r2 = CC)

N’ –N/C (unless r1 or r2 = CC)

Z’ – N/C (unless r1 or r2 = CC)

V’ –N/C (unless r1 or r2 = CC)

C’ –N/C (unless r1 or r2 = CC)

Description: Exchanges the contents of two registers of the same size. The post-
byte of this instruction identifies the two registers to be swapped. The
post-byte consists of two 4-bit codes, each of which identifies a register
as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r1 or r2 is the condition code register (CC), all condition code flags are
set to the values of corresponding bits in the other register.

The order of the registers in the post-byte does not effect operation.
The same register can be used in both positions if desired.

Examples: LDD #$0000 ;Now D has $0000
LDX #$1234 ;Now X has $1234
EXG D,X ;Now X has $0000 and D has $1234

Encoding: $1EXY

X = first register, Y = second register from table above

EXG Exchange Data Between Two Registers

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r1 or r2 = CC)

N/C (unless r1 or r2 = CC)

N/C (unless r1 or r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-67

Source Forms: INCr
INC pp

Operation: r’ <- r + 1; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –N/C

Description: Increments the specified signed operand and updates the condition
codes.

Overflow occurs if the operand is $7F, since incrementing this operand
produces a signed positive number that cannot be expressed in 8 bits.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction increments the
contents of a register. Any one of the following registers may be
specified by r: A, B, E*, F*.

Note that INC does not effect the carry bit.

Examples: LDE #$0F ;Now E has $0F
INCE ;Now E has $10 (INCE for 6309 0nly)

Encoding: $XC (X = register; 4=A, 5=B)
$1XXC (XX = register; 14=E, 15=F)
$XC (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

INC(8- Increment the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-68

Source Forms: INCr

Operation: r’ <- r + 1

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –N/C

Description: Increments the specified signed operand and updates the condition
codes.

Overflow occurs if the operand is $7FFF, since incrementing this
operand produces a signed positive number that cannot be expressed
in 16 bits.

Addressing Modes: Inherent

Comments: This instruction increments the contents of a register. Any one of the
following registers may be specified by r: D*, W*.

Note that INC does not effect the carry bit.

Examples: LDW #$00FF ;Now W has $00FF
INCW ;Now W has $0100 (INCW for 6309 0nly)

Encoding: $1XXC (XX = register; 04=D, 05=W)

INC(16- Increment the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-69

Source Forms: JMP ea

Operation: PC’ <- ea

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Calculates an effective address (ea), and stores it in the program
counter. This causes execution to continue starting from the instruction at
the effective address.

Addressing Modes: Extended
Direct
Indexed

Comments: When used with extended addressing, this instruction produces
position-dependent code. Use the LBRA instruction for equivalent
position-independent code.

Examples: JMP >RESET ;Continue execution starting at label ‘RESET’

Encoding: $XE (+ post-bytes)

X = addressing mode. 0=direct, 6=indexed, 7=extended.

JMP Set Next Execution Address

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-70

Source Forms: JSR ea

Operation: SP’ <- SP-2; (SP-2)’ <- PC+3; PC’ <- ea

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Pushes the absolute address of the next instruction onto the stack, then
calculates an effective address (ea), and stores it in the program counter.

This causes execution to continue starting from the instruction at the
effective address. Subsequent execution of an RTS instruction causes
execution to resume at the instruction immediately following the JSR.

Addressing Modes: Extended
Direct
Indexed

Comments: When used with extended addressing, this instruction produces
position-dependent code. Use the LBSR instruction for equivalent
position-independent code.

Examples: JSR >SETUP ;Call subroutine starting at label ‘SETUP’
. ; continue here after subroutine
.

Encoding: $XD (+ post-bytes)

X = addressing mode. 9=direct, A=indexed, B=extended.

JSR Call A Subroutine

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-71

Source Forms: LBCC id

Operation: if (CC.C=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code carry (CC.C) bit is clear.

Behaves like LBRN if the condition code carry (CC.C) bit is set.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBCC stands for
“long branch if carry clear”. This instruction is identical to LBHS. The
opposite instruction is LBCS. See also BCC.

Examples: LSRA ;Get LSB of A to carry
LBCC EXIT ;go to ‘EXIT’ if LSB of A was clear
. ; we’d be here if LSB of A was set

Encoding: $1024XXXX

XXXX = relative offset.

LBCC Set PC If CC Carry Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-72

Source Forms: LBCS id

Operation: if (CC.C=1) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA (branch always) if the condition code carry (CC.C)
bit is set.

Behaves like LBRN (branch never) if the condition code carry (CC.C)
bit is clear.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBCS stands for
“long branch if carry set”. This instruction is identical to LBLO. The
opposite instruction is LBCC. See also BCS.

Examples: LSRA ;Get LSB of A to carry
LBCS EXIT ;go to ‘EXIT’ if LSB of A was set
. ; we’d be here if LSB of A was clear

Encoding: $1025XXXX

XXXX = relative offset.

LBCS Set PC If CC Carry Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-73

Source Forms: LBEQ id

Operation: if (CC.Z=1) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the most recent arithmetic operation left the
condition code zero (CC.Z) bit set. This generally indicates that the
result of the last signed or unsigned arithmetic operation was zero.

Behaves like LBRN if the most recent arithmetic operation left the
condition code zero (CC.C) bit clear. This generally indicates that the
result of the last signed or unsigned arithmetic operation was non-zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBEQ stands for
“long branch if equal”. The opposite instruction is LBNE. See also BEQ.

Examples: LDA #$50
SUBA #$50
LBEQ EXIT ;Now A=$00; $50 is “equal” to $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$43

Encoding: $1027XXXX

XXXX = relative offset.

LBEQ Set PC If CC Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-74

Source Forms: LBGE id

Operation: if (CC.N = CC.V) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) and overflow
(CC.V) bits match. This generally indicates that the result of the last
signed arithmetic operation was “greater than or equal to” zero.

Behaves like LBRN if the condition code negative (CC.N) and overflow
(CC.V) bits differ. This generally indicates that the result of the last
signed arithmetic operation was “less than” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBGE stands for
“long branch if greater or equal”. The opposite instruction is LBLT. See
also BGE.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
LBGE MORE ;go to ‘MORE’ - result is greater.
. ; continue here.

Encoding: $102CXXXX

XXXX = relative offset.

LBGE Set PC If CC Greater or Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-75

Source Forms: LBGT id

Operation: if (CC.N=CC.V and CC.Z=0) then PC’ <- PC+id+4; else PC’ <-
PC+4
H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) and overflow
(CC.V) bits match, and the zero bit (CC.Z) is clear. This generally
indicates that the result of the last signed arithmetic operation was
“greater than” zero.

Behaves like LBRN if the condition code negative (CC.N) and overflow
(CC.V) bits differ, or if the zero (CC.Z) bit is set. This generally
indicates that the result of the last signed arithmetic operation was “less
than or equal to” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBGT stands for
“long branch if greater than”. The opposite instruction is LBLE. See also
BGT.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
LBGT MORE ;go to ‘MORE’ - result is greater.
. ; continue here.

Encoding: $102EXXXX

XXXX = relative offset.

LBGT Set PC If CC Greater (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-76

Source Forms: LBHI id

Operation: if (CC.C=0 and CC.Z=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code carry (CC.C) and zero (CC.Z)
bits are clear. This generally indicates that the result of the last unsigned
arithmetic operation was “higher than” zero.

Behaves like LBRN if the condition code carry (CC.C) or zero (CC.Z)
bit is set. This generally indicates that the result of the last unsigned
arithmetic operation was “lower than or same as” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBHI stands for
“long branch if higher”. The opposite instruction is LBLS. See also BHI.

Examples: LDA #$80
SUBA #$50
LBHI EXIT ;Now A=$30; $80 is “higher” than $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$90

Encoding: $1022XXXX

XXXX = relative offset.

LBHI Set PC If CC Higher (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-77

Source Forms: LBHS id

Operation: if (CC.C=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code carry (CC.C) bit is clear. This
generally indicates that the result of the last unsigned arithmetic operation
was “higher than or same as” zero.

Behaves like LBRN if the condition code carry (CC.C) bit is set. This
generally indicates that the result of the last unsigned arithmetic operation
was “lower than” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBHS stands for
“long branch if higher or same”. This instruction is identical to LBCC. The
opposite instruction is LBLO. See also BHS.

Examples: LDA #$50
SUBA #$50
LBHS EXIT ;Now A=$00; $50 is “same” as $50; go to ‘EXIT’
. ; we’d be here if 2nd instruction was SUBA #$90

Encoding: $1024XXXX

XXXX = relative offset.

LBHS Set PC If CC Higher or Same (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-78

Source Forms: LBLE id

Operation: if (CC.N<>CC.V or CC.Z=0) then PC’ <- PC+id+4; else PC’ <-
PC+4
H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) and overflow
(CC.V) bits differ, or if the zero (CC.Z) bit is set. This generally
indicates that the result of the last signed arithmetic operation was “less
than or equal to” zero.

Behaves like LBRN if the condition code negative (CC.N) and overflow
(CC.V) bits match, and the zero bit (CC.Z) is clear. This generally
indicates that the result of the last signed arithmetic operation was
“greater than” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBLE stands for
“long branch if less than or equal”. The opposite instruction is LBGT.
See also BLE.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
LBLE LESS ;don’t go to ‘LESS’ - result is greater.
. ; continue here.

Encoding: $102FXXXX

XXXX = relative offset.

LBLE Set PC If CC Less or Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-79

Source Forms: LBLO id

Operation: if (CC.C=1) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code carry (CC.C) bit is set. This
generally indicates that the result of the last unsigned arithmetic operation
was “lower than” zero.

Behaves like LBRN if the most recent arithmetic operation left the
condition code carry (CC.C) bit clear. This generally indicates that the
result of the last unsigned arithmetic operation was “higher than or same
as” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBLO stands for
“long branch if lower”. This instruction is identical to LBCS. The opposite
instruction is LBHS. See also BLO.

Examples: LDA #$50
SUBA #$50
LBLO EXIT ;Now A=$00; $50 is “same” as $50; continue
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$90

Encoding: $1024XXXX

XXXX = relative offset.

LBLO Set PC If CC Lower (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-80

Source Forms: LBLS id

Operation: if (CC.C=1 or CC.Z=1) then PC’ <- PC+id+4; else PC’ <- PC+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code carry (CC.C) or zero (CC.Z)
bit is set. This generally indicates that the result of the last unsigned
arithmetic operation was “lower than or same as” zero.

Behaves like LBRN if the condition code carry (CC.C) and zero (CC.Z)
bits are clear. This generally indicates that the result of the last unsigned
arithmetic operation was “higher than” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBLS stands for
“long branch if lower or same”. The opposite instruction is LBHI. See
also BLS.

Examples: LDA #$80
SUBA #$50
LBLS EXIT ;Now A=$30; $80 is “higher” than $50; continue.
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$90

Encoding: $1023XX

XX = relative offset.

LBLS Set PC If CC Lower or Same (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-81

Source Forms: LBLT id

Operation: if (CC.N <> CC.V) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) and overflow
(CC.V) bits differ. This generally indicates that the result of the last
signed arithmetic operation was “less than” zero.

Behaves like LBRN if the condition code negative (CC.N) and overflow
(CC.V) bits match. This generally indicates that the result of the last
signed arithmetic operation was “greater than or equal to” zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBLT stands for
“long branch if less than”. The opposite instruction is LBGE. See also
BLT.

Examples: LDA #-10 ;Value of -10
CMPA #-20 ;Result: -10 is greater than -20
LBLT LESS ;don’t go to ‘LESS’ - result is greater.
. ; continue here.

Encoding: $102DXXXX

XXXX = relative offset.

LBLT Set PC If CC Less (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-82

Source Forms: LBMI id

Operation: if (CC.N=1) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) bit is set.
This generally indicates that the result of the last signed arithmetic
operation was negative.

Behaves like LBRN if the condition code negative (CC.N) bit is clear.
This generally indicates that the result of the last signed arithmetic
operation was positive (or zero).

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBMI stands for
“long branch if minus”. The opposite instruction is LBPL. See also BMI.

Examples: LDA #-128 ;Value of -128
ADDA #200 ;Result is +72
LBMI NEGTIV ;don’t go to ‘NEGTIV’ - result is positive.
. ; continue here.

Encoding: $102BXXXX

XXXX = relative offset.

LBMI Set PC If CC Negative Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-83

Source Forms: BNE id

Operation: if (CC.Z=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the most recent arithmetic operation left the
condition code zero (CC.Z) bit clear. This generally indicates that the
result of the last signed or unsigned arithmetic operation was non-zero.

Behaves like LBRN if the most recent arithmetic operation left the
condition code zero (CC.C) bit set. This generally indicates that the
result of the last signed or unsigned arithmetic operation was zero.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBNE stands for
“long branch if not equal”. The opposite instruction is LBEQ. See also
BNE.

Examples: LDA #$50
SUBA #$50
LBNE EXIT ;Now A=$00; $50 is “equal” to $50; continue
. ; we’d ‘EXIT’ if 2nd instruction was SUBA #$43

Encoding: $1026XXXX

XXXX = relative offset.

LBNE Set PC If CC Not Equal (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-84

Source Forms: LBPL id

Operation: if (CC.N=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code negative (CC.N) bit is clear.
This generally indicates that the result of the last signed arithmetic
operation was positive (or zero).

Behaves like LBRN if the condition code negative (CC.N) bit is set.
This generally indicates that the result of the last signed arithmetic
operation was negative.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBPL stands for
“long branch if plus”. The opposite instruction is LBMI. See also BPL.

Examples: LDA #-128 ;Value of -128
ADDA #200 ;Result is +72
LBPL POSTIV ;go to ‘POSTIV’ - result is positive.
. ; continue here if 2nd instruction was ADDA #88

Encoding: $102AXXXX

XXXX = relative offset.

LBPL Set PC If CC Negative Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-85

Source Forms: LBRA id

Operation: PC’ <- PC+id+3

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Calculates a new value for the program counter, relative to its current
value. This causes execution to continue starting from the instruction at
the new program counter value.

The 16-bit signed imediate data (id) plus 3 is added to the original value
of the program counter. This allows the LBRA instruction to transfer
control to an address anywhere within +32767 to -32768 bytes
(modulo 65536) of the instruction immediately following the LBRA.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. Use the JMP
instruction for equivalent position-dependent code.

The ‘LBRA id’ instruction is equivalent to ‘JMP id,PC’, but it occupies
less memory. LBRA stands for “long branch always”

Examples: LBRA RESET ;Continue execution starting at label ‘RESET’

Encoding: $16XXXX

XXXX = relative offset.

LBRA Set Next Execution Address (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-86

Source Forms: LBRN id

Operation: PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction like NOP, has no effect on the processor, memory, or
peripherals.

The LBRN instruction occupies four memory locations, and always takes
the same amount of time to execute. The 3rd and 4th bytes of the
LBRN instruction may be any data, including a two-byte instruction.

Addressing Modes: Inherent

Comments: The LBRN instruction is most often used during program debugging, to
temporarily disable a conditional branch by replacing it with LBRN.
LBRN stands for “long branch never”. Technically, LBRN is the
opposite of LBRA (”long branch always”).

Examples: LBRN NEVER ;Don’t transfer control from here to ‘NEVER’

Encoding: $1021XXXX

XXXX = data to be skipped.

LBRN Skip Two Bytes

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-87

Source Forms: LBSR id

Operation: SP’ <- SP-2; (SP-2)’ <- PC+3; PC’ <- PC+id+3

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Pushes the absolute address of the next instruction onto the stack, then
calculates a new value for the program counter, relative to its current
value. The 16-bit signed imediate data (id) plus 3 is added to the
original value of the program counter.

This causes execution to continue starting from the instruction at the
effective address. Subsequent execution of an RTS instruction causes
execution to resume at the instruction immediately following the LBSR.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. Use the JSR
instruction for equivalent position-dependent code.

The ‘LBSR id’ instruction is equivalent to ‘JSR id,PC’, but it occupies
less memory. LBSR stands for “long branch to subroutine”

Examples: LBSR SETUP ;Call subroputine starting at label ‘SETUP’
. ; continue execution here after subroutine
.

Encoding: $17XXXX

XXXX = relative offset.

 LBSR Call A Subroutine (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-88

Source Forms: LBVC id

Operation: if (CC.V=0) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code overflow (CC.V) bit is clear.
This generally indicates that overflow did not occur during the last signed
arithmetic operation.

Behaves like LBRN if the condition code carry (CC.C) bit is set. This
generally indicates that overflow occured during the last signed arithmetic
operation.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBVC stands for
“long branch if overflow clear”. The opposite instruction is LBVS. See
also BVC.

Examples: LDA #$80 ;Value of -128
SUBA #4 ;Subtract 4 - creates an overflow!
LBVC OK ;go to ‘OK’ if no overflow.
. ; handle the overflow error here

Encoding: $1028XXXX

XXXX = relative offset.

LBVC Set PC If CC Overflow Clear (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-89

Source Forms: LBVS id

Operation: if (CC.V=1) then PC’ <- PC+id+4; else PC’ <- PC+4

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Behaves like LBRA if the condition code overflow (CC.V) bit is set.
This generally indicates that overflow occured during the last signed
arithmetic operation.

Behaves like LBRN if the condition code carry (CC.C) bit is clear. This
generally indicates that overflow did not occur during the last signed
arithmetic operation.

Addressing Modes: Relative (16 bit)

Comments: This instruction produces position-independent code. LBVS stands for
“long branch if overflow set”. The opposite instruction is LBVC. See
also BVS.

Examples: LDA #$80 ;Value of -128
SUBA #4 ;Subtract 4 - creates an overflow!
LBVS ERROR ;go to ‘ERROR’ if overflow.
. ; continue here if no overflow

Encoding: $1029XXXX

XXXX = relative offset.

LBVS Set PC If CC Overflow Set (Program Counter Relative)

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-90

Source Forms: LDr p

Operation: r’ <- (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the memory byte to the specified register. The
condition code register is updated according to the result.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: The value loaded may be either signed or unsigned, depending on
how the program interprets the condition code register after executing
the LD instruction.

Examples: LDA ,X ;Load register A with 8-bit value from memory
LDB #$40 ;Load register B with the constant $40

Encoding: $X6 (+ post-bytes) Register A or B
$11X6 (+ post-bytes) Register E* or F*

X = register and mode. For register A or E, 8=immediate,
9=direct, A=indexed, B=extended. For register B or F,

LD(8- Load Register with Memory Contents

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-91

Source Forms: LDr p

Operation: r’ <- (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the memory word to the specified 16-bit
register. The condition code register is updated according to the result.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: The value loaded may be either signed or unsigned, depending on
how the program interprets the condition code register after executing
the LD instruction.

Examples: LDD ,X ;Load register D with 16-bit value from memory
LDY #$0400 ;Load register Y with the constant $0400

Encoding: $XY Register D, U or X
$10XY (+ post-bytes) Register S, W*, or Y

X = mode; for W*, X, or Y, 8=immed., 9=direct, A=indxd,
B=extd.; for D, S or U, C=immed., D=direct, E=indxd, F=extd.

LD(16- Load Register with Memory Contents

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-92

Source Forms: LDr p

Operation: r’ <- (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the long memory word to the specified 16-bit
register. The condition code register is updated according to the result.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: The value loaded may be either signed or unsigned, depending on
how the program interprets the condition code register after executing
the LD instruction.

Examples: LDQ ,X ;Load register Q with 32-bit value from memory

Encoding: $CDNNNNNNNN Register Q, immediate (N = immed. data)
$10XC (+ post-bytes) Register Q, other modes

X = mode; for register Q, D=direct, E=indexed, F=extended.

LD(32- Load Register with Memory Contents

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-93

Source Forms: LDBT rr.n,qq.k

Operation: rr.n’ <- (DP:qq).k

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C (unless rr = CC)

Description: Copies bit (k) of 8-bit direct page memory location (qq) to bit (n) of
register (rr). The memory location and other bits of the register are not
modified. Two bits in the post-byte specify the register, three bits
specify the memory location bit number, and three bits specify the
register bit number. The register (rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: LDBT A,7,FLAGS,2 ;Set bit 7 of register A to bit 2 of FLAGS
LDBT CC,FLAGS,3 ;Set carry to value of bit 3 of FLAGS

Encoding: $1136XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

LDBT Load Bit of Memory to Bit of Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-94

Source Forms: LDMD #n

Operation: MD’ <- n

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction controls the operating mode of the microprocessor by
writing data into the MD register.

Bit 0 (the least significant bit) of the MD register controls execution
mode: a value of 0 selects emulation of the MC6809, while a value of 1
selects “native” HD6309 mode. Bit 1 of the MD register controls the
operation of the FIRQ* interrupt. A value of 0 emulates MC6809
operation, while a value of 1 causes the processor to respond to FIRQ*
as it would to IRQ*.

Addressing Modes: Immediate

Comments: The HD6309 initializes the MD register to $00 at reset, for full
compatibility with the MC6809. All special 6309 instructions may be
used in this emulation mode. The “native” mode of the HD6309
shortens many instructions by 1 cycle and stacks the W register
between DP and B during interrupts.

Examples: LDMD #$01 ;Begin processing in Native Mode

Encoding: $113DXX

XX is the immediate data to be stored in the MD register

LDMD Load the MD Register With Immediate Data

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-95

Source Forms: LEAr ea

Operation: r’ <- ea

H’ –N/C

N’ –N/C

Z’ – See Comments below.

V’ –N/C

C’ –N/C

Description: Calculates an effective address (ea), and stores it in the specified 16-bit
register.

Addressing Modes: Indexed

Comments: The LEAX and LEAY variants of this instruction effects the zero bit of
the condition code register (CC.Z).

The LEAU and LEAS variants do not effect any condition code register
bits.

Examples: LEAX TABLE,PCR ;Load X with PC-relative address of TABLE
LEAY -1,Y ;Decrement the Y register
LEAU ,U ;Test the U register for zero
LEAX 0,Y ;Faster than TFR X,Y!

Encoding: $3X (+ post-bytes) ;Register X, Y, S, or U

X = register. 0=X, 1=Y, 2=S, 3=U.

LEA Load Effective Memory Address to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-96

Source Forms: LSLr
LSL pp

Operation: r’ <- r << 1; r.0’ <- 0; CC.C’ <- r.7; CC.V’ <- r.7 ^ r.6; {or for (m)}

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Shifs the specified operand left one position. The most-significant bit of
the original operand is copied to the carry bit (C) of the condition code
register. The least-significant bit of the result is forced to 0.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction shifts the contents of a
register.

This instruction is identical to the ASL instruction, described elsewhere.

Examples: LDB #$0F ;Now B has $0F
LSLB ;Now B has $1E, C, V clear

Encoding: $X8 Register A or B
X = register. For register A, X=4. For Register B, X=5.

$X8 (+ post-bytes) Memory
X = mode; 0=direct, 6=indexed, 7=extended.

LSL(8- Logically Shift the Operand Left One Position

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-97

Source Forms: LSLr

Operation: r’ <- r << 1; r.0’ <- 0; CC.C’ <- r.15; CC.V’ <- r.15 ^ r.14

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Shifts the operand left one position. The most-significant bit of the
original operand is copied to the carry bit (C) of the condition code
register. The least-significant bit of the result is forced to 0.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent

Comments: This instruction is identical to the ASL instruction, described elsewhere.

Examples: LDD #$00FF ;Now D has $00FF
LSLD ;Now D has $01FE, C, V clear (LSLD for 6309 0nly)

Encoding: $1XX8 Register D

XX = register. For register D, XX=04.

LSL(16- Logically Shift the Operand Left One Position

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-98

Source Forms: LSRr
LSR pp

Operation: r’ <- r >> 1; r.7’ <- 0; CC.C’ <- r.0; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Shifts the specified operand right one position. The least-significant bit
of the original operand is copied to the carry bit (C) of the condition code
register. The most-significant bit of the result is forced to 0.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: This instruction differs slightly from the ASR instruction. While the ASR
instruction preserves the sign of the original operand, the LSR instruction
always clears the most-signification bit of the result.

Examples: LDB #$0F ;Now B has $0F
LSRB ;Now B has $07, C is set

Encoding: $X4 Register A or B
X = register. For register A, X=4. For Register B, X=5.

$X4 (+ post-bytes) Memory
X = mode; 0=direct, 6=indexed, 7=extended.

LSR(8- Logically Shift the Operand Right One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-99

Source Forms: LSRr

Operation: r’ <- r >> 1; r.15’ <- 0; CC.C’ <- r.0

H’ –N/C

N’ –Always cleared

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Shifts the specified operand right one position. The least-significant bit
of the original operand is copied to the carry bit (C) of the condition code
register. The most-significant bit of the result is forced to 0.

Addressing Modes: Inherent

Comments: This instruction differs slightly from the ASR instruction. While the ASR
instruction preserves the sign of the original operand, the LSR instruction
always clears the most-signification bit of the result.

Examples: LDW #$00FF ;Now W has $00FF
LSRW ;Now W has $007F, C is set (LSRW for 6309 0nly)

Encoding: $1XX4

XX = register. For register D, XX=04. For register W*, XX=05.

LSR(16- Logically Shift the Operand Right One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-100

Source Forms: MUL

Operation: D’ <- A * B

H’ –N/C

N’ –N/C

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if B’.7 set, else 0

Description: Multiplies the 8-bit unsigned contents of the A and B registers, and
stores the 16-bit unsigned result in the D register (A:B).

Addressing Modes: Inherent

Comments:

Examples: LDA #16 ;Now A has 16
LDB #45 ;Now B has 45
MUL ;Multiply; now D has 720 decimal

Encoding: $3D

MUL Unsigned Single-Precision Integer Multiply

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-101

Source Forms: MULD p

Operation: Q’ <- D * (m)

H’ –N/C

N’ –1 if result < 0, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –Always cleared

Description: Multiplies the 16-bit signed contents of the D register (A:B) by the 16-
bit signed contents of the memory location referenced by the
addressing mode, and stores the 32-bit signed result in the Q register
(A:B:E:F).

Addressing Modes: Immediate
Direct
Indexed
Extended

Comments:

Examples: LDD #$4567 ;Now D has $4567
MULD #$1001 ;Multiply by $1001
... ;Now Q has $0456B567 (D has $0456, W has $B567)

Encoding: $11XF (+ post-bytes for addressing mode)

X = addressing mode (8=immed., 9=direct, A=indexed,
B=extended)

MULD Signed Double-Precision Integer Multiply

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-102

Source Forms: NEGr
NEG pp

Operation: r’ <- 0 - r; or (m)’ <- 0 - (m)

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if value was 10000000

C’ –1 if borrow, else 0

Description: Replaces the specified operand with its 2’s complement.

The V bit will be set only if the operand is $80 (representing -128); the
negative of this value is 128, which cannot be expressed as an 8-bit
signed integer; the result in this case is $80.

The C bit will be cleared only if the operand is $00; the negative of this
value is $00, so no borrow is required to calculate it. In all other cases, V
will be cleared and C will be set.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction negates the contents
of a register. Any one of the following registers may be specified by r:
A, B

Examples: LDA #$0F ;Now A has $0F
NEGA ;Now A has $F1, C is set, V is cleared

Encoding: $X0 (X = register; 4=A, 5=B)
$X0 (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

NEG(8- Negate the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-103

Source Forms: NEGr

Operation: r’ <- 0 - r

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if value was $8000

C’ –1 if borrow, else 0

Description: Replaces the specified operand with its 2’s complement.

The V bit will be set only if the operand is $8000 (-32768); the
negative of this value is 32768, which cannot be expressed as a 16-bit
signed integer; the result in this case is $8000.

The C bit will be cleared only if the operand is $0000; the negative of
this value is $0000, so no borrow is required to calculate it. In all other
cases, V will be cleared and C will be set.

Addressing Modes: Inherent

Comments: This instruction negates the contents of a register. Any one of the
following registers may be specified by r: D*

Examples: LDD #$00FF ;Now D has $00FF
NEGD ;Now D has $FF01, C is set, V is cleared

;(6309 0nly)

Encoding: $1XX0 (XX = register; 04=D, 05=W)

NEG(16- Negate the Operand

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-104

Source Forms: NOP

Operation:

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction has no effect on the processor, memory, or peripherals.

The NOP instruction occupies a single memory location, and always
takes the same amount of time to execute.

Addressing Modes: Inherent

Comments: NOP is often used during program debugging. You can effectively
eliminate instructions from a program by replacing them with a series of
NOP instructions having the same total length.

NOP is also sometimes used in timing loops.

Examples: LDA #15 ;Initialize loop counter
L1: NOP ;Burn some time
 DECA ;Decrement loop counter
 BNE L1 ;Keep going until 15 times

Encoding: $12

NOP No Operation

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-105

Source Forms: OIM #n,pp

Operation: (m)’ <- (m) | n

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise ORs the 8-bit contents of the addressed memory location with
the 8-bit immediate data, and stores the result at the memory location.

Addressing Modes: Direct
Indexed
Extended

Comments: This instruction executes an indivisible read-modify-write cycle.

Examples: OIM #$80,<FLAGS ;Set the most-significant bit of FLAGS

Encoding: $X1YY (+ post-bytes for addressing mode)
X = addressing mode (0 = direct, 6 = indexed, 7 = extended);
YY = immediate data

OIM OR Immediate Data to Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-106

Source Forms: ORr p

Operation: r’ <- r | (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise inclusive-ORs the contents of the memory byte to the contents
of the specified register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively sets bits of the specified register. For every
set bit in the operand, the instruction sets the corresponding register bit.
The instruction does not change register bits corresponding to clear bits
in the operand.

Examples: LDA ,X ;Get a value from memory
ORA #$55 ;Set every other bit of the value

Encoding: $XA (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

OR(8- Bit-Wise Inclusive-OR Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-107

Source Forms: ORr p

Operation: r’ <- r | (m)

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Bit-wise inclusive-ORs the contents of the memory word to the contents
of the specified register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction selectively sets bits of the specified register. For every
set bit in the operand, the instruction sets the corresponding register bit.
The instruction does not change register bits corresponding to clear bits
in the operand.

Examples: LDD ,X ;Get a 16-bit value from memory
ORD #$5555 ;Set every other bit of the value

Encoding: $10XA (+ post-bytes) Register D*

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

OR(16- Bit-Wise Inclusive-OR Memory Contents to Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-108

Source Forms: ORCC #n

Operation: CC’ <- CC | n

H’ –H | n.5

N’ –N | n.3

Z’ – Z | n.2

V’ –V | n.1

C’ –C | n.0

Description: Bit-wise ORs the 8-bit contents of the condition code register with the 8-
bit immediate data, and stores the result in the condition code register.

Addressing Modes: Immediate (8-Bit)

Comments: The ORCC instruction may be used to set any desired bits into the
condition code register. ORCC is most often used to set the F and I
bits, to disable hardware interrupts during critical sections of a program. It
is also used to set the carry bit CC.C.

Examples: ORCC #$50 ;Disable IRQ and FIRQ interrupts

Encoding: $1ANN

NN = immediate data to OR into condition code register.

ORCC OR Immediate Data to Condition Code Register

Condition Codes: E’ –

F’ –

 I’ –

E | n.7

F | n.6

I | n.4

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-109

Source Forms: ORR r1,r2

Operation: r2’ <- r2 | r1

H’ –N/C (unless r2 = CC)

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise ORs the contents of two registers, and stores the result in the
second register. The post-byte of this instruction identifies the two
registers to be ORed. The post-byte consists of two 4-bit codes, each
of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
ORR X,Y ;Now X still has $1234 and Y has $5777

Encoding: $1035XY

X = first register, Y = second register (gets result) from
table above

ORR OR Register Contents with Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-110

Source Forms: PSHr rl ;Form 1
PSHr #n ;Form 2

Operation: for each specified register ‘z’: r’ <- r - sizeof(z); (r-sizeof(z))’ <- z

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction pushes zero or more register values onto either the
system or the user stack. When using Form 2, set bits in the immediate
operand identify the registers to be pushed, as follows:

Bit # Set: 7 6 5 4 3 2 1 0
Register: PC S/U Y X DP B A CC

For either form, registers are pushed by scanning the equivalent Form 2
operand from left to right (e.g. Y before B; CC last)

Addressing Modes: Immediate

Comments: PSH pushes the low-order byte of a 16-bit register before pushing its
high-order byte; programs can manipulate stacked register values like
any other 16-bit quantity. If operand bit n.6 is set, PSHS pushes
register U to the system stack; PSHU pushes register SP to the user
stack. Refer to PSHSW for more information.

Examples: PSHS U,Y,D ;Push U, Y, B, and A to system stack

Encoding: $3XNN ;Register S or U

X=register; 4=S, 6=U. N=immediate register selection bit
field operand

PSH Push Selected Registers Onto Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-111

Source Forms: PSHSW

Operation: SP’ <- SP - 2; (SP-2)’ <- W

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction pre-decrements the system stack pointer (register SP)
and then stores the contents of the W register at the 16-bit memory
location addressed by SP.

Addressing Modes: Inherent

Comments: The standard PSHS instruction cannot accommodate the W register.
You must use PSHSW, or another pre-decrement / store instruction, to
store W on the stack.

Examples: PSHSW ;Push W to system stack

Encoding: $1038

PSHSW Push the W Register to the System Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-112

Source Forms: PSHUW

Operation: U’ <- U - 2; (U-2)’ <- W

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction pre-decrements the user stack pointer (register U) and
then stores the contents of the W register at the 16-bit memory location
addressed by U.

Addressing Modes: Inherent

Comments: The standard PSHU instruction cannot accommodate the W register.
You must use PSHUW, or another pre-decrement / store instruction, to
store W on the user stack.

Examples: PSHUW ;Push W to user stack

Encoding: $103A

PSHUW Push the W Register to the User Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-113

Source Forms: PULr rl ;Form 1
PULr #n ;Form 2

Operation: for each specified register ‘z’: z’<-(r-sizeof(z)); r’ <- r + sizeof(z);

H’ –N/C (unless n.0 set)

N’ –N/C (unless n.0 set)

Z’ – N/C (unless n.0 set)

V’ –N/C (unless n.0 set)

C’ –N/C (unless n.0 set)

Description: This instruction pulls zero or more register values from either the system
or the user stack. When using Form 2, set bits in the immediate operand
identify the registers to be pulled, as follows:

Bit # Set: 7 6 5 4 3 2 1 0
Register: PC S/U Y X DP B A CC

For either form, registers are pulled by scanning the equivalent Form 2
operand from right to left (e.g. CC first; B before Y).

Addressing Modes: Immediate

Comments: PUL pulls the high-order byte of a 16-bit register before pulling its low-
order byte; programs can manipulate stacked register values like any
other 16-bit quantity. If operand bit n.6 is set, PULS pulls register U
from the system stack; PULU pulls register SP from the user stack.
Refer to PULSW for more information.

Examples: PULS D,Y,U ;Pull A, B, Y, and U from system stack

Encoding: $3XNN ;Register S or U

X=register; 5=S, 7=U. N=immediate register selection bit
field operand

PUL Pull Selected Registers From Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless n.0 set)

N/C (unless n.0 set)

N/C (unless n.0 set)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-114

Source Forms: PULSW

Operation: W’ <- (SP); SP’ <- SP + 2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction loads the contents of the 16-bit memory location
addressed by SP into the W register and then post-increments the
system stack pointer (register SP).

Addressing Modes: Inherent

Comments: The standard PULS instruction cannot accommodate the W register.
You must use PULSW, or another load / post-increment instruction, to
load W from the stack.

Examples: PULSW ;Pull W from system stack

Encoding: $1039

PULSW Pull the W Register from the System Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-115

Source Forms: PULUW

Operation: W’ <- (U); U’ <- U + 2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction loads the contents of the 16-bit memory location
addressed by U into the W register and then post-increments the
system stack pointer (register U).

Addressing Modes: Inherent

Comments: The standard PULU instruction cannot accommodate the W register.
You must use PULUW, or another load / post-increment instruction, to
load W from the user stack.

Examples: PULUW ;Pull W from user stack

Encoding: $103B

PULUW Pull the W Register from the User Stack

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-116

Source Forms: ROLr
ROL pp

Operation: r’ <- r << 1; r.0’ <- CC.C; CC.C’ <- r.7; CC.V’ <-r.7 ^ r.6; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Rotates the specified operand and carry left one position. The most-
significant bit of the original operand is copied to the carry bit (C) of the
condition code register. The original carry bit is copied to the least-
significant bit of the result.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction rotates the contents of
a register. Any one of the following registers may be specified by r: A,
B.

Examples: LDA #$0F ;Now A has $0F
ORCC #1 ;Force carry set
ROLA ;Now A has $1F, C is clear

Encoding: $X9 (X = register; 4=A, 5=B)
$X9 (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

ROL(8- Rotate the Operand and Carry Left One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-117

Source Forms: ROLr

Operation: r’ <- r << 1; r.0’ <- CC.C; CC.C’ <- r.15; CC.V’ <-r.15 ^ r.14

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if sign changed, else 0

C’ –Set to MSB of operand

Description: Rotates the specified operand and carry left one position. The most-
significant bit of the original operand is copied to the carry bit (C) of the
condition code register. The original carry bit is copied to the least-
significant bit of the result.

The overflow bit (V) of the condition code is set if the most-significant bit
(the sign bit) of the result differs from the most-significant bit of the
operand.

Addressing Modes: Inherent

Comments: This instruction rotates the contents of a register. Any one of the
following registers may be specified by r: D*, W*.

Examples: LDW #$00FF ;Now W has $00FF
ORCC #1 ;Force carry set
ROLW ;Now W has $01FF, C is clear (ROLW for 6309 0nly)

Encoding: $1XX9 (XX = register; 04=D, 05=W)

ROL(16- Rotate the Operand and Carry Left One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-118

Source Forms: RORr
ROR pp

Operation: r’ <- r >> 1; r.7’ <- CC.C; CC.C’ <- r.0; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Rotates the specified operand and carry right one position. The least-
significant bit of the original operand is copied to the carry bit (C) of the
condition code register. The original carry bit is copied to the most-
significant bit of the result.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction rotates the contents of
a register. Any one of the following registers may be specified by r: A,
B

Examples: LDA #$0F ;Now A has $0F
ORCC #1 ;Force carry set
RORA ;Now A has $87, C is set

Encoding: $X6 (X = register; 4=A, 5=B)
$X6 (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

ROR(8- Rotate the Operand and Carry Right One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-119

Source Forms: RORr

Operation: r’ <- r >> 1; r.15’ <- CC.C; CC.C’ <- r.0

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –N/C

C’ –1 if operand odd, else 0

Description: Rotates the specified operand and carry right one position. The least-
significant bit of the original operand is copied to the carry bit (C) of the
condition code register. The original carry bit is copied to the most-
significant bit of the result.

Addressing Modes: Inherent

Comments: This instruction rotates the contents of a register. Any one of the
following registers may be specified by r: D*, W*.

Examples: LDW #$00FF ;Now W has $00FF
ORCC #1 ;Force carry set
RORW ;Now W has $807F, C is set (RORW for 6309 0nly)

Encoding: $1XX6 (XX = register; 04=D, 05=W)

ROR(16- Rotate the Operand and Carry Right One Bit

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-120

Source Forms: RTI

Operation: pull register values (including CC and PC) from stack

H’ –(SP).5

N’ –(SP).3

Z’ – (SP).2

V’ –(SP).1

C’ –(SP).0

Description: This instruction pulls CC, PC, and possibly other register values from
the system stack. The exact operation of the instruction depends on the
curent processor mode (Native or Emulation), and on the state of the
stacked CC.E bit, as follows:

Mode (SP).E Registers Pulled (in order)
Emulation 0 CC, PC
Emulation 1 CC, A, B, DP, X, Y, U, PC
Native 0 CC, PC
Native 1 CC, A, B, E, F, DP, X, Y, U, PC

Addressing Modes: Inherent

Comments: This instruction is most often used at the end of an interrupt service
routine, to restore register values (including PC) to their states just prior
to the interrupt. Refer to the descriptions of CWAI, LDMD, PULS,
SWI, SWI2, SWI3, IRQ, FIRQ, and NMI for additional information.

Examples: LDA >HWDATA ;Trivial interrupt service: get device data,
STA >MYTEMP ; save device data,
CLR >HWSTAT ; clear device status,
RTI ;Return from interrupt

Encoding: $3B

RTI Return From Interrupt

Condition Codes: E’ –

F’ –

 I’ –

(SP).7

(SP).6

(SP).4

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-121

Source Forms: RTS

Operation: PC’ <- (SP); SP’ <- SP+2

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: This instruction pulls the value of the program counter (register PC) from
the system stack.

Addressing Modes: Inherent

Comments: This instruction is most often used at the end of a subroutine, to return
control to the instruction immediately following the calling JSR, LBSR or
BSR. Refer to the descriptions of JSR, LBSR, BSR, and PULS for
additional information.

Examples: BSR RND ;Call a subroutine called “RND”
 JMP AWAY ;Go somewhere else when done...
RND: ADDD #128 ;Trivial subroutine: Add 128 to register D
 RTS ;Return from subroutine

Encoding: $39

RTS Return From Subroutine

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-122

Source Forms: SBCr p

Operation: r’ <- r - (m) - CC.C

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts both the contents of the memory byte, and the carry bit of the
condition code register, from the contents of the A or B register. The
result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for multi-precision subtraction, since it allows
the carry from a previous byte or word subtraction to be factored into a
subsequent byte subtraction.

Examples: SUBB #3 ;Subtract from B register - could create a carry
SBCA #0 ;Now the D register has been decremented by 3

Encoding: $X2 (+ post-bytes) Register A or B

X = register and mode. For register A, 8=immediate, 9=direct,
A=indexed, B=extended. For register B, C=immediate, D=direct,
E=indexed, F=extended.

SBC(8- Subtract Memory Contents and Carry from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-123

Source Forms: SBCr p

Operation: r’ <- r - (m) - CC.C

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts both the contents of the memory word, and the carry bit of the
condition code register, from the contents of the specified register. The
result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for multi-precision subtraction, since it allows
the carry from a previous byte or word subtraction to be factored into a
subsequent word subtraction.

Examples: SUBE 3,S ;Subtract value on stack from E register
SBCD #0 ;Accumulate 24 bit result in A.B.E registers

Encoding: $10X2 (+ post-bytes) Register D

X = register and mode. For register D, 8=immediate, 9=direct,
A=indexed, B=extended.

SBC(16- Subtract Memory Contents and Carry from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-124

Source Forms: SBCR r1,r2

Operation: r2’ <- r2 - r1 - CC.C

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts the contents of two registers, and the carry bit, and stores the
result in the second register. The post-byte of this instruction identifies
the two registers to be subtracted. The post-byte consists of two 4-bit
codes, each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: COMB ;Force carry bit set
LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
SBCR X,Y ;Now X still has $1234 and Y has $3332

Encoding: $1033XY

X = first register, Y = second register (gets result) from
table above

SBCR Subtract Register Contents & Carry from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-125

Source Forms: SEX

Operation: A’ <- (unsigned)B.7 * 255

H’ –N/C

N’ –Set if result < 0; else clear

Z’ – Set if result 0; else clear

V’ –N/C

C’ –N/C

Description: This instruction converts a signed 8-bit value in B to a signed 16-bit
value in D.

Addressing Modes: Inherent

Comments: The SEX instruction is most often used prior to performing an arithmetic
operation between an 8-bit value and a 16-bit value.

Examples: LDB 3,X ;Get an 8-bit value from memory
 SEX ;Convert to 16-bit value
 ADDD >OLDSUM ;Add another 16-bit value (OLDSUM) to it

Encoding: $1D

SEX Sign-Extend Register B to Register D

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-126

Source Forms: SEXW

Operation: E’ <- (unsigned)F.7 * 255

H’ –N/C

N’ –Set if result < 0; else clear

Z’ – Set if result 0; else clear

V’ –N/C

C’ –N/C

Description: This instruction converts a signed 8-bit value in F to a signed 16-bit
value in W.

Addressing Modes: Inherent

Comments: The SEXW instruction is most often used prior to performing an
arithmetic operation between an 8-bit value and a 16-bit value.

Examples: LDE 3,X ;Get an 8-bit value from memory
 SEXW ;Convert to 16-bit value in W
 ADDR W*,D ;Add 16-bit contents of D register to W

Encoding: $14

SEXW Sign-Extend Register F to Register W

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-127

Source Forms: STr p

Operation: (m)’ <- r

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the specified register to the memory byte. The
condition code register is updated according to the result.

Addressing Modes: Extended
Direct
Indexed

Comments: The value stored may be either signed or unsigned, depending on how
the program interprets the condition code register after executing the ST
instruction.

Examples: STA ,X ;Store register A at location pointed to by X

Encoding: $X7 (+ post-bytes) Register A or B
$11X7 (+ post-bytes) Register E* or F*

X = register and mode. For register A or E, 9=direct,
A=indexed, B=extended. For register B or F, D=direct,

ST(8- Store Contents of Register at Memory Address

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-128

Source Forms: STr p

Operation: (m)’ <- r

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the specified 16-bit register to the memory
word. The condition code register is updated according to the result.

Addressing Modes: Extended
Direct
Indexed

Comments: The value stored may be either signed or unsigned, depending on how
the program interprets the condition code register after executing the ST
instruction.

Examples: STD ,X ;Store register D at location pointed to by X

Encoding: $XY Register D, U or X
$10XY (+ post-bytes) Register S, W*, or Y

X = mode; for W*, X, or Y, 9=direct, A=indexed, B=eextended;
for D, S or U, D=direct, E=indexed, F=extended. Y =

ST(16- Store Register Contents at Memory Address

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-129

Source Forms: STr p

Operation: (m)’ <- r

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always 0

C’ –N/C

Description: Copies the contents of the specified 32-bit register to the long memory
word. The condition code register is updated according to the result.

Addressing Modes: Extended
Direct
Indexed

Comments: The value stored may be either signed or unsigned, depending on how
the program interprets the condition code register after executing the ST
instruction.

Examples: STQ ,X ;Store register Q at location pointed to by X

Encoding: $10XD (+ post-bytes) Register Q*

X = mode; for register Q, D=direct, E=indexed, F=extended.

ST(32- Store Register Contents at Memory Address

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-130

Source Forms: STBT rr.n,qq.k

Operation: (DP:qq).k’ <- rr.n

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: Copies bit (n) of register (rr) to bit (k) of 8-bit direct page memory
location (qq). The register and other bits of the memory location are not
modified. Two bits in the post-byte specify the register, three bits
specify the memory location bit number, and three bits specify the
register bit number. The register (rr) is selected from the following table:

00 CC (CCR) 01 A 10 B 11 ---

Addressing Modes: Bit Function
(immed. register number,
immed. bit numbers, direct
operand)

Comments: The bit number 000 is used for the least-significant bit of an 8-bit value.
The bit number 111 is used for the most-significant bit.

Examples: STBT A,7,FLAGS,2 ;Set bit 2 of FLAGS to bit 7 of register A
STBT CC,FLAGS,3 ;Program bit 3 of FLAGS to match carry bit

Encoding: $1137XXYY
XX = post-byte (RRkkknnn); YY = direct page address. RR =
register number from above table; kkk = memory bit #; nnn =
register bit #

STBT Store Bit of Register to Bit of Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-131

Source Forms: SUBA p
SUBB p
SUBE p
SUBF p

Operation: r’ <- r - (m)

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts the contents of the memory byte from the contents of the
specified register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for single-precision subtraction, or for the first
byte of multi-precision subtraction, since it allows subtraction of two
quantities while ignoring any carry left over from a previous operation.

Examples: SUBB #3 ;Subtract from B register - could create a carry
SBCA #0 ;Now the D register has been decremented by 3

Encoding: $X0 + post-bytes (A and B registers)
$11X0 + post-bytes (E and F registers)
X = addressing mode (for A or E: 8 = immed., 9 = direct, A =
indexed, B = extd.; for B or F: C = immed., D = direct, E =
indexed, F = extd.)

SUB(8- Subtract Memory Contents from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-132

Source Forms: SUBD p
SUBW p

Operation: r’ <- r - (m)

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts the contents of the memory word from the contents of the
specified register. The result is stored in the specified register.

Addressing Modes: Immediate
Extended
Direct
Indexed

Comments: This instruction can be used for single-precision subtraction, or for the first
word of multi-precision subtraction, since it allows subtracting two
quantities ignoring any carry left over from previous operations.

Examples: LDW ,X ;Get a value from memory
SUBW <BASE ;Subtract predetermined BASE offset

Encoding: $X3 (+ post-bytes) Register D
$11X0 (+ post-bytes) Register W

X = addressing mode. For registers D and W*, 8 = immediate, 9
= direct, A = indexed, B = extended.

SUB(16- Subtract Memory Contents from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-133

Source Forms: SUBR r1,r2

Operation: r2’ <- r2 - r1

H’ –Undefined

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –1 if overflow, else 0

C’ –1 if carry, else 0

Description: Subtracts the contents of two registers, and stores the result in the
second register. The post-byte of this instruction identifies the two
registers to be subtracted. The post-byte consists of two 4-bit codes,
each of which identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is a 16 bit register, r1 is treated as the equivalent 16 bit register
even if it is only 8 bits (e.g. r2=X, r1=A or B forces r1 to D).

If r1 is an 8 bit register and r2 is a 16 bit register, only the 8 LSB’s of r1
are used. r2=CC should not be used.

Examples: LDY #$4567 ;Now Y has $4567
LDX #$1234 ;Now X has $1234
SUBR X,Y ;Now X still has $1234 and Y has $3333

Encoding: $1032XY

X = first register, Y = second register (gets result) from
table above

SUBR Subtract Register from Register

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-134

Source Forms: SWI

Operation: CC.E’ <-1; Stack all registers; CC.F’ <- 1; CC.I’ <- 1; PC’ <- ($FFFA)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The SWI instructuction pushes the current values of all registers to the
system stack. It then transfers control to the address stored at memory
location $FFFA. The exact operation of SWI depends on the current
processor mode (Emulation or Native) as follows:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFFA normally exits via an
RTI instruction. SWI is most often used to implement breakpoints in
software debuggers, and to provide “application” programs with access
to “operating system” utility routines. SWI may be executed regardless
of the state of the CC.I and CC.F bits.

Examples: SWI ;Perform Software Interrupt
NEXT: NOP ;End up here after doing SWI service routine

Encoding: $3F

SWI Software Interrupt

Condition Codes: E’ –

F’ –

 I’ –

Always 1

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-135

Source Forms: SWI2

Operation: CC.E’ <-1; Stack all registers; PC’ <- ($FFF4)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The SWI2 instructuction pushes the current values of all registers to the
system stack. It then transfers control to the address stored at memory
location $FFF4. The exact operation of SWI2 depends on the current
processor mode (Emulation or Native) as follows:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF4 normally exits via an
RTI instruction. SWI2 is most often used to provide “application”
programs with access to “operating system” utility routines. SWI2 may
be executed regardless of the state of the CC.I and CC.F bits. Note
that SWI2 does not disable subsequent interrupts.

Examples: SWI2 ;Perform Software Interrupt 2
NEXT: NOP ;End up here after doing SWI2 service routine

Encoding: $103F

SWI2 Software Interrupt 2

Condition Codes: E’ –

F’ –

 I’ –

Always 1

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-136

Source Forms: SWI3

Operation: CC.E’ <-1; Stack all registers; PC’ <- ($FFF2)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The SWI3 instructuction pushes the current values of all registers to the
system stack. It then transfers control to the address stored at memory
location $FFF2. The exact operation of SWI3 depends on the current
processor mode (Emulation or Native) as follows:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF2 normally exits via an
RTI instruction. SWI3 is most often used to provide “application”
programs with access to “operating system” utility routines. SWI3 may
be executed regardless of the state of the CC.I and CC.F bits. Note
that SWI3 does not disable subsequent interrupts.

Examples: SWI3 ;Perform Software Interrupt 3
NEXT: NOP ;End up here after doing SWI3 service routine

Encoding: $113F

SWI3 Software Interrupt 3

Condition Codes: E’ –

F’ –

 I’ –

Always 1

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-137

Source Forms: SYNC

Operation: Stop processing instructions; wait for interrupt; resume

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: When the processor executes a SYNC instruction, no other instructions
will be executed until after the next hardware interrupt. This synchronizes
the processor to the hardware interrupt. This instruction may be
executed regardless of the state of the I and F interrupt mask bits.

While waiting for the next hardware interrupt, the processor places its
address and data busses in a high-impedance state. On the 6309 and
6309E, the processor also enters a low-power “sleep mode”.

Addressing Modes: Inherent

Comments: If the interrupt is enabled (NMI, or appropriate interrupt mask bit
cleared) and the next hardware interrupt lasts more than 3 cycles, the
processor responds normally to the interrupt and then continues
execution. If the interrupt is masked, or is shorter than 3 cycles,
execution continues immediately.

Examples: ORCC #$50 ;Disable interrupts
SYNC ;Wait for video blanking interrupt
STA 3,Y ;Store character from A to video screen at Y

Encoding: $13

SYNC Synchronize to External Event

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-138

Source Forms: TFM r1+,r2+ ;Form 1 (forward block move M[r1] to M[r2])
TFM r1-,r2- ;Form 2 (backward block move M[r1] to M[r2])
TFM r1+,r2 ;Form 3 (output bytes at M[r1] to peripheral)
TFM r1,r2+ ;Form 4 (input bytes from peripheral to M[r2])

Operation: while (W<>0) [(r2)’ <- (r1); adjust r1; adjust r2; W’ <- W-1]

H’ –N/C

N’ –N/C

Z’ – Always set

V’ –N/C

C’ –N/C

Description: Moves W bytes of data from the memory location(s) pointed to by r1
to the memory location(s) pointed to by r2. The post-byte of this
instruction identifies the two pointer registers r1, r2.

The post-byte consists of two 4-bit codes, each of which identifies a
register as follows:

0000 D 0001 X 0010 Y 0011 U (US) 0100 SP

Addressing Modes: Register
(immed. register numbers)

Comments: Each incremented or decremented register changes by W. W is cleared
at the end of the instruction. The instruction is interruptible. An interrupt
during Form 4 re-reads the peripheral referenced by r1 without storing
the previous data byte, advancing r2, or decrementing W; use Form 4
only with interrupts disabled.

Examples: LDX #$FF21 ;Address of I/O port
LDY #MYBUFF ;Address of 256 byte buffer
LDW #$0100 ;Byte count (256)
TFM (Y+,X) ;Send 256 bytes to peripheral from buffer MYBUFF

Encoding: $1138JK (Form 1, J=source, K=destination pointer register
from table)
$1139JK (Form 2, J=source, K=destination pointer register
from table)
$113AJK (Form 3, J=source, K=destination pointer register

TFM Transfer Multiple Bytes Memory-to-Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-139

Source Forms: TFR r1,r2

Operation: r2’ <- r1

H’ –N/C (unless r2 = CC)

N’ –N/C (unless r2 = CC)

Z’ – N/C (unless r2 = CC)

V’ –N/C (unless r2 = CC)

C’ –N/C (unless r2 = CC)

Description: Copies data in register r1 to another register r2 of the same size. The
post-byte of this instruction identifies the source (r1) and destination (r2)
of the data. The post-byte consists of two 4-bit codes, each of which
identifies a register as follows:

0000 D (A:B) 0100 SP 1000 A 1100 ---
0001 X 0101 PC 1001 B 1101 ---
0010 Y 0110 W (E:F)* 1010 CC (CCR) 1110 E *
0011 U (US) 0111 V * 1011 DP (DPR) 1111 F *

Addressing Modes: Register
(immed. register numbers)

Comments: If r2 is the condition code register (CC), all condition code flags are set to
the values of corresponding bits in r1.

The E, F, W*, and V registers are present only in the HD6309 and
HD6309E processor series.

Examples: LDD #$0000 ;Now D has $0000
LDX #$1234 ;Now X has $1234
TFR D,X ;D still has $0000, so does X now

Encoding: $1FXY

X = source register, Y = destination register from table
above

TFR Transfer Data From One Register to Another

Condition Codes: E’ –

F’ –

 I’ –

N/C (unless r2 = CC)

N/C (unless r2 = CC)

N/C (unless r2 = CC)

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-140

Source Forms: TIM #n,pp

Operation: (m) & n

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Bit-wise ANDs the 8-bit contents of the addressed memory location
with the 8-bit immediate data, and sets the condition code register
according to the result. The addressed memory location is not modified.

Addressing Modes: Direct
Indexed
Extended

Comments: This instruction executes a standard read cycle, rather than an indivisible
read-modify-write cycle.

Examples: TIM #$80,<FLAGS ;Clear Z if most-significant bit of FLAGS set

Encoding: $XBYY (+ post-bytes for addressing mode)
X = addressing mode (0 = direct, 6 = indexed, 7 = extended);
YY = immediate data

TIM Bit Test Immediate Data Against Memory

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-141

Source Forms: TSTr
TST pp

Operation: r - 0; {or for (m)}

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Compares the specified signed operand to the constant zero, and
updates the condition codes. This instruction does not modify the
operand.

Addressing Modes: Inherent
Direct
Indexed
Extended

Comments: When inherent addressing is used, this instruction tests the contents of a
register. Any one of the following registers may be specified by r: A, B,
E*, F*.

Note that TST does not effect the carry bit.

Examples: LDB #COUNT ;Set iteration counter
LOOP TSTB ;Check for B=0 each time
 BEQ DONE ; if B=0, exit this loop
 ...

Encoding: $XD (X = register; 4=A, 5=B)
$1XXD (XX = register; 14=E, 15=F)
$XD (+ post-bytes) (X=mode; 0=direct, 6=indexed, 7=extended)

TST(8- Test the Operand Against Zero

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-142

Source Forms: TSTr

Operation: r - 0

H’ –N/C

N’ –1 if result negative, else 0

Z’ – 1 if result zero, else 0

V’ –Always cleared

C’ –N/C

Description: Compares the specified signed operand to the constant zero, and
updates the condition codes. This instruction does not modify the
operand.

Addressing Modes: Inherent

Comments: This instruction tests the contents of a register. Any one of the following
registers may be specified by r: D*, W*.

Note that TST does not effect the carry bit.

Examples: LDD #COUNT ;Set iteration counter
LOOP TSTD ;Check for D=0 each time
 BEQ DONE ; if D=0, exit this loop
 ...

Encoding: $1XXD (XX = register; 04=D, 05=W)

TST(16- Test the Operand Against Zero

Condition Codes: E’ –

F’ –

 I’ –

N/C

N/C

N/C

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-143

Source Forms: (none)

Operation: CC.E’ <-1; Stack registers; CC.F’, CC.I’, MD.7’ <- 1; PC’ <- ($FFF0)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The 6309 automatically executes DIV0 whenever the divisor of DIVD
or DIVQ is zero. DIV0 pushes the current values of all registers to the
system stack, and transfers control to the address stored at memory
location $FFF0. The exact operation of DIV0 depends on the current
processor mode as follows:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF0 normally exits via an
RTI instruction. DIV0 is most often used by software debuggers, to
detect runaway programs. DIV0 may be executed regardless of the
state of the CC.I and CC.F bits. The DIV0 vector is shared with ILLOP;
the 6309 sets bit MD.7 if an DIV0 occured (see BITMD).

Examples: DIVD #0 ;Force division by 0 - perform DIV0
NEXT: NOP ;End up here after DIV0 service routine

Encoding: (none)

_DIV0 Division by Zero Trap

Condition Codes: E’ –

F’ –

 I’ –

Always 1

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-144

Source Forms: (none)

Operation: CC.E’ <- MD.1; Stack registers; CC.F’, CC.I’ <- 1; PC’ <- ($FFF6)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The 6309 executes FIRQ as the next instruction whenever external
hardware pulls the FIRQ* pin low with CC.F clear. FIRQ transfers
control to the address stored at memory location $FFF6. Operation
depends on processor and FIRQ modes:

Proc. Mode FIRQ Mode Registers Pushed (in order)
Emulation FIRQ PC, CC
Emulation IRQ PC, U, Y, X, DP, B, A, CC
Native FIRQ PC, CC
Native IRQ PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF6 normally exits via an
RTI instruction. FIRQ is most often used to implement high-speed
asynchronous I/O functions. FIRQ may be executed regardless of the
state of the CC.I bit, but will not be executed while CC.F is set. Refer
to descriptions of LDMD and CWAI for additional information.

Examples: START: (any instruction) ;FIRQ occurs during this instruction
 ;FIRQ routine executes here
NEXT: (any instruction) ;Come here after doing FIRQ routine.

Encoding: (none)

_FIRQ Fast Interrupt

Condition Codes: E’ –

F’ –

 I’ –

Always 1

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-145

Source Forms: (none)

Operation: CC.E’ <-1; Stack registers; CC.F’, CC.I’, MD.6’ <- 1; PC’ <- ($FFF0)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The 6309 automatically executes ILLOP in place of an otherwise
undefined (or illegal) instruction. ILLOP advances PC past the offending
opcode, pushes all registers to the system stack, and transfers control to
the address stored at memory location $FFF0. The exact operation of
ILLOP depends on the current processor mode as follows:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF0 normally exits via an
RTI instruction. ILLOP is most often used by software debuggers, to
detect runaway programs. ILLOP may be executed regardless of the
state of the CC.I and CC.F bits. The ILLOP vector is shared with DIV0;
the 6309 sets bit MD.6 if an ILLOP occured (see BITMD).

Examples: FCB $10,$20 ;Invalid instruction - perform ILLOP
NEXT: NOP ;End up here after ILLOP service routine

Encoding: (none)

_ILLOP Illegal Instruction Trap

Condition Codes: E’ –

F’ –

 I’ –

Always 1

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-146

Source Forms: (none)

Operation: CC.E’ <-1; Stack all registers; CC.I’ <- 1; PC’ <- ($FFF8)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The 6309 automatically executes IRQ as the next instruction whenever
external hardware pulls the IRQ* pin low and CC.I is clear. IRQ pushes
the current values of all registers to the system stack, and transfers
control to the address stored at memory location $FFF8. The operation
of IRQ depends on the processor mode:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF8 normally exits via an
RTI instruction. IRQ is most often used to implement asynchronous I/O
or timing functions. IRQ may be executed regardless of the state of the
CC.F bit, but will not be executed while CC.I is set.

Examples: START: (any instruction) ;IRQ occurs during this instruction
 ;IRQ routine executes here
NEXT: (any instruction) ;Come here after doing IRQ routine.

Encoding: (none)

_IRQ Interrupt

Condition Codes: E’ –

F’ –

 I’ –

Always 1

N/C

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-147

Source Forms: (none)

Operation: CC.E’ <-1; Stack all registers; CC.F’ <- 1; CC.I’ <- 1; PC’ <- ($FFFC)

H’ –N/C

N’ –N/C

Z’ – N/C

V’ –N/C

C’ –N/C

Description: The 6309 automatically executes NMI as the next instruction whenever
external hardware pulls the NMI* pin low. NMI pushes the current
values of all registers to the system stack, and transfers control to the
address stored at memory location $FFFC. The exact operation of NMI
depends on the current processor mode:

Mode Registers Pushed (in order)
Emulation PC, U, Y, X, DP, B, A, CC
Native PC, U, Y, X, DP, F, E, B, A, CC

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFFC normally exits via an
RTI instruction. NMI is most often used to implement high-speed I/O
and hardware debugging functions. NMI may be executed regardless
of the state of the CC.I and CC.F bits.

Examples: START: (any instruction) ;NMI occurs during this instruction
 ;NMI routine executes here
NEXT: (any instruction) ;Come here after doing NMI routine.

Encoding: (none)

_NMI Non-Maskable Interrupt

Condition Codes: E’ –

F’ –

 I’ –

Always 1

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-148

Source Forms: (none)

Operation: CC.I’ <- 1; CC.F’ <- 1; DP’ <- 0; V’ <- V; MD’ <- 0; PC’ <- ($FFFE)

H’ –Undefined

N’ –Undefined

Z’ – Undefined

V’ –Undefined

C’ –Undefined

Description: The 6309 executes RESET as the next instruction whenever external
hardware pulls the RESET* pin low. RESET transfers control to the
address stored at memory location $FFFE.

RESET always forces the processor into Emulation Mode, clears the
DP register, and sets both CC.I and CC.F to disable interrupts. The
value of the V register is preserved. All other register values are
undefined after RESET.

Addressing Modes: Inherent

Comments: The routine pointed to by memory location $FFF0 normally initializes
hardware peripherals and the system stack pointer. RESET is most
often used to force the processor into a known state at power-up.
RESET may be executed regardless of the state of the CC.I and
CC.F bits. See also LDMD for additional information.

Examples: BUSY: (any instruction) ;RESET occurs during this instr.
...
DORST: (any instruction) ;RESET routine executes here.
 ; No going back!

Encoding: (none)

_RESET Hardware Reset

Condition Codes: E’ –

F’ –

 I’ –

Undefined

Always 1

Always 1

All 6809 Mnemonics Copyright Motorola. All 6301 Mnemonics Copyright Hitachi.
The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

3-149

cburke
Typewritten Text
This page intentionally left blank.

SECTION 4
APPLICATION INFORMATION

4.1 INTRODUCTION

This section provides information that will help programmers, already familiar with the 6809,
to fully take advantage of the new 6309 features.

Some of the information in this section takes the form of sample programs. To make the
sample programs easier to understand, we’ve left out some optimization and programming
tricks that would be obvious to experienced machine language programmers. You are
welcome to optimize or modify the sample programs for your own use in any way that you
see fit.

4.2 Detecting the 6309

Some programmers may want their software to run on both the 6309 and the 6809. Since
the new features of the 6309 aren’t available on the MC68B09E, software that runs on
either processor must either:

A) Not use any of the new 6309 features, or
B) Determine which processor is present, and use the new features only when

executing on an 6309.

The following subroutine determines which processor is present:

* Determine whether processor is 6309 or 6809
* Returns Z clear if 6309, set if 6809
CHK309 PSHS D ;Save Reg-D
 FDB $1043 ;6309 COMD instruction (COMA on 6809)
 CMPB 1,S ;not equal if 6309
 PULS D,PC ;exit, restoring D

The subroutine relies on the 6809 treating undefined instructions as 1-byte NOPs. When
executed on a 6809, the subroutine complements A, but not B; the result of the
comparison will be that B equals its saved value. When executed on a 6309, the

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-1

subroutine complements both A and B; the result of the comparison will be that B does not
equal its saved value. The subroutine preserves all register values.

4.3 Detecting 6309 Native Mode

Most programs run without modification in both Emulation Mode and Native Mode.
Programs that process software interrupts, include timing loops, or use interrupts to
terminate polled I/O loops, are the exception. To run in both modes, these exceptional
programs need to modify the behavior of their stack access routines and timing loops,
based on the current mode.

It would be easy to determine the processor’s operating mode, if the BITMD instruction
could access bit 0 of the mode register (bit MD.0). Unfortunately this is not allowed, so we
need to resort to more devious means.

The following subroutine determines whether the processor is in Emulation Mode or Native
Mode:

* Determine whether processor is in Emulation Mode or Native Mode
* Works for 6809 or 6309.
* Returns Z clear if Emulation (or 6809), Z set if Native
CHKNTV PSHSW ;Ignored on 6809 (no stack data)
 PSHS U,Y,X,DP,D,CC ;Save all registers
 LEAU CHKX68,PCR ;Special exit for 6809 processor
 LDY #0
 PSHS U,Y,X,D ;Push 6809 trap, Native marker, PC temps
 ORCC #$D0 ;Set CC.E (entire), no interrupts
 PSHS U,Y,X,DP,D,CC ;Save regs
 LEAX CHKXIT,PCR
 STX 10,S ;Preset Emulation mode PC slot
 STX 12,S ;Preset Native mode PC slot
 RTI ;End up at CHKXIT next
CHKXIT LDX ,S++ ;In NATIVE, get 0; in EMULATION, non-zero
 BEQ CHKNTV9
 LEAS 2,S ;Discard native marker in EMULATION mode
CHKNTV9 TFR CC,A
 ANDA #$0F ;Keep low CC value
 AIM #$F0,0,S ;Keep high bits of stacked CC
 ORA 2,S ;Combine CC values (skip over 6809 trap)
 STA 2,S ; and save on stack
 PULSW ;Pull bogus W (does RTS to CHKX68 on 6809)
 PULS CC,D,DP,X,Y,U ;Restore 6309 registers and return
 PULSW
 RTS

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-2

CHKX68 PULS CC,D,DP,X,Y,U,PC ;Restore 6809 registers and return

The subroutine relies on the 6809 treating undefined instructions as 1-byte or 2-byte
NOPs. It preserves all register values.

Since the subroutine takes relatively long to execute, you may want your programs to call it
only once. If a program sets or clears some memory location based on the subroutine’s
returned condition codes, it can make future mode determinations quickly by examining the
memory location. This technique relies on the processor not changing modes once you’ve
called the subroutine.

4.4 Switching Between Emulation Mode and Native Mode

The 6309 powers up in Emulation Mode, and reverts to Emulation Mode when reset.
Programs that use Native Mode must explicitly change the processor mode via the LDMD
instruction.

The LDMD instruction loads an immediate value into the M (mode) register. Only the two
least-significant bits of this value effect processor operation. Bit 0 selects between
Emulation Mode (0) and Native Mode (1). Bit 1 selects between 6809-like FIRQ handling
(0) and 6309 IRQ-like FIRQ handling (1).

For most applications, you’ll set the processor mode and FIRQ handling mode no more
than once — at the beginning of the program. In this case, you know exactly which
processor and FIRQ modes you want and a simple LDMD instruction sets up the desired
modes. For example, the instruction

LDMD #$01

forces 6809-like FIRQ handling and places the processor in Native Mode.

If your program is running under an operating system, you may want to leave control of the
processor mode to the operating system. Changing the contents of the MD register from
within an application could confuse the operating system, since the operating system won’t
be aware of the change.

This section describes two subroutines that you can use to set the processor mode. The
1st subroutine selects either Native Mode or Emulation Mode and forces the FIRQ handling
mode bit to a predetermined value. The 2nd subroutine selects either processor mode,

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-3

preserving the current FIRQ mode.

Here’s the 1st subroutine. It sets the 6309 processor mode to either Native Mode or
Emulation Mode, depending on the value in Register A:

* Force processor to Emulation Mode or Native Mode,
* depending on value in Register A
* A=0 Emulation Mode
* A<>0 Native Mode
* Works for 6309 only.
SETPMD TSTA
 BNE SETNTV
 LDMD #$00 ;Force Emulation Mode, normal FIRQ
 BRA SETPND
SETNTV LDMD #$01 ;Force Native Mode, normal FIRQ
SETPND RTS

The subroutine directly loads the 6309 mode (M) register with either $00 for Emulation
Mode or $01 for Native Mode. This forces the processor into the specified mode, but also
resets the Register MD bit controlling how the processor handles FIRQ interrupts. The
values $00 and $01 tell the 6309 to handle FIRQ interrupts exactly as they are handled on
the 6809. If your program wants the processor to handle FIRQ interrupts just like IRQ
interrupts, you should change the values in the subroutine to $02 for Emulation Mode and
$03 for Native Mode.

We wouldn’t have to worry about which value (e.g. $00 or $02 for Emulation Mode) to
store in the MD register, if only we could read the current contents of the MD Register. We
could then read the current contents of M, strip off the least-significant bit, update the least-
significant bit for to select the desired mode, and write the updated value to MD.

The 6309 provides the BITMD instruction specifically to read the MD register.
Unfortunately, this instruction can read only the two most-significant bits or MD.
There’s no way to read the contents of the two least-significant bits, as we would like.

This type of problem occurs frequently when interfacing microprocessors to peripheral
hardware (such as parallel output ports): often, some or all memory locations used by the
peripheral are write-only. One way that programmers to work around this problem is by
having the program remember the most recent value written to the peripheral. The value is
remembered by storing a copy of it in some “normal” memory location. Programmers
often refer to a memory location used to store a copy of write-only peripheral data as a
“register image”.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-4

We can use the “register image” technique to improve our subroutine to set the 6309
processor mode. Here’s an improved version:

* Change processor to Emulation Mode or Native Mode,
* depending on value in Register A
* A=0 Emulation Mode
* A<>0 Native Mode
*
* Assumes direct page location <D.MDREG contains an
* accurate image of the MD register contents (The
* program must initialize <D.MDREG to $00 at start-up).
*
* Since LDMD accepts only an immediate operand, we
* push the appropriate LDMD / RTS sequence onto the
* stack and call it as a subroutine.
* Works for 6309 only.
SETPMD PSHS X,D,CC ;Save registers
 ORCC #$50 ;Make operation indivisible
 LDB <D.MDREG ;Get mode register image
 ANDB #$FE ; strip mode selection bit (Emulation)
 TSTA
 BEQ SETMD2 ;Skip next part if want Emulation
 ORB #$01 ;Set Native mode bit (INCB lacks clarity)
SETMD2 STB <D.MDREG ;B has right value — update register image
 LDA #$39 ;RTS op-code
 EXG B,A ;Now A = LDMD’s immed. operand, B = RTS
 LDX #$103D ;X has LDMD’s 2-byte op-code
 EXG D,X ;Now D:X = 10 3D <value> 39
 PSHS X,D ;Put subroutine on stack
 JSR ,S ;Call subroutine, setting mode
 LEAS 4,S ; throw away subroutine when done.
 PULS CC,D,X,PC ; and return to caller.

This subroutine uses several advanced machine language programming techniques. First, it
saves the condition code register and explicitly disables interrupts using ORCC; this
ensures that no interrupt service routine can change the value of D.MDREG once our
subroutine has read it. Second, we use direct page location D.MDREG (you may use any
available memory location in your programs) to keep a “register image” of the 6309’s write-
only MD register; note that we read D.MDREG to obtain the current value of the MD
register, and also that we update D.MDREG to match the new value that we write to the
MD register. Finally, we use the system stack to store a custom-built subroutine that loads
the MD register with the desired value; this is necessary because LDMD requires the
immediate addressing mode, and we wished to avoid self-modifying code in the
subroutine.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-5

4.5 Selecting and Using the 6309 FIRQ Mode

Among popular 8-bit microprocessors, only the 6809 family has the unique FIRQ (Fast
Interrupt ReQuest) interrupt. FIRQ has its own interrupt vector ($FFF6 vs. $FFF8 for IRQ)
and its own interrupt mask bit in the condition code register (CC.F vs. CC.I for IRQ).

On the 6809, FIRQ behaves differently than any other type of interrupt. Most interrupts
(NMI, IRQ, SWI, etc.) stack processor registers PC, U, Y, X, DP, B, A, and CC. FIRQ
stacks only PC and CC. It takes time to stack registers; since FIRQ stacks fewer registers
than any other interrupt, the processor can transfer control to the service routine faster. This
makes the 6809’s FIRQ ideal for use in high-speed interrupt-driven I/O applications.

The 6309 exactly emulates the 6809’s handling of FIRQ, but only when mode bit MD.1 is
zero. The processor sets this bit to zero at reset, allowing the 6309 to drop directly into a
6809 system.

When bit MD.1 is one, the 6309 changes the operation of FIRQ. FIRQ retains its separate
interrupt vector and condition code register mask bit, but when MD.1 is one each FIRQ
stacks the same set of registers as any other interrupt. You might wonder why this is a
useful feature, if it just makes the interrupt take longer.

We’ve already mentioned that FIRQ is well suited for high-speed interrupt-driven I/O.
Many computer systems just use FIRQ as another distinct interrupt input, and aren’t
concerned about its added speed. On these systems, the FIRQ interrupt service routine
often begins by stacking some or all of the registers that FIRQ doesn’t. These service
routines actually use more time manually stacking and unstacking registers, than would be
spent if FIRQ automatically stacked all of the registers. Here’s an example:

* 6809-style FIRQ routine, assuming all registers
* must be preserved.
*
* This routine uses 34 cycles for register stacking
* overhead; the FIRQ itself takes 10 cycles, for a
* total overhead of 44 cycles.
FIRQVC PSHS U,Y,X,DP,B,A ;Save registers — 14 cycles
 LDA >DEVSTS ;Clear the interrupt source
 ... ; (do rest of service here)
 PULS A,B,DP,X,Y,U ;Restore registers — 14 cycles
 RTI ;Restore CC and PC — 6 cycles

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-6

The PSHS and PULS instructions use 28 machine cycles, and require 4 extra bytes in the
interrupt service routine. The 6309’s MD.1 mode bit overcomes this problem by changing
FIRQ to automatically stack the PC, U, Y, X, DP, B, A, and CC registers. Here’s an
example of an equivalent modified FIRQ routine for the 6309:

* 6309-style FIRQ routine, assuming FIRQ automatically
* preserves all registers.
*
* This routine uses 15 cycles for register stacking
* overhead; the FIRQ itself takes 19 cycles, for a
* total overhead of 34 cycles.
FIRQVC LDA >DEVSTS ;Clear the interrupt source
 ... ; (do rest of service here)
 RTI ;Restore all registers — 15 cycles

In this example, the new FIRQ mode of the 6309 saves 4 bytes and 10 cycles.

You can select either mode of FIRQ handling on the 6309, by using the LDMD instruction
to modify bit MD.1. Many of the techniques described in Section 4.4 for the MD.0 bit
apply equally to MD.0. For example, the instruction

LDMD #$02

forces IRQ-like FIRQ handling and places the processor in Emulation Mode.

If your program is running under an operating system, you may want to leave control of
FIRQ handling to the operating system. Changing the contents of the MD register from
within an application could confuse the operating system, since the operating system won’t
be aware of the change.

4.6 Using the W Register in Emulation Mode

All of the 6309’s new instructions and registers may be accessed from both Emulation
Mode and Native Mode.

Using the W register in Emulation Mode presents a special challenge. Since this register is
not stacked during Emulation Mode interrupts, interrupt service routines must take care not to
change the value of the W register. Furthermore, time-sliced systems based on the 6309
must take care to save each task’s W register before switching to another task; otherwise,
switching to a new task that modifies the W register will destroy the W register value
expected by the old task when it resumes.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-7

Here’s an example of a simple program and interrupt routine, each using the W register.

* Main program. Decrements W register until 0, then
* executes an RTS
MAIN LDW #1000 ;Delay value
DELAY DECW ; (loop until zero)
 BNE DELAY
 RTS ;Exit
* Interrupt service routine. This routine
* transfers 16 bytes of data from IOADDR to
* the buffer pointed to by >BFADDR
IRQSVC LDX #IOADDR
 LDY >BFADDR
 LDW #16 ;byte count
 TFM X,Y+
 RTI ;now W is zero

In Native Mode, these routines would work completely independently of one another. The
Native Mode IRQ would stack and restore the contents of the W register, avoiding any
impact of the IRQSVC routine on the MAIN routine.

In Emulation Mode, an interrupt occurring during execution of MAIN’s delay loop will
extend the delay to at least 64 times its intended length: the interrupt service routine exits
with W = 0, causing MAIN’s delay loop to execute 65,536 iterations before the DECW
instruction sets the Z bit of the condition code register. Even worse, frequent interrupts in this
example will make the delay loop last forever, since each new interrupt resets W. This is
only one example of the kind of problems that can occur when using the W register in
Emulation Mode.

In this example, we’ve modified the troublesome interrupt service routine to preserve the
W register, eliminating the problem:

* Main program. Decrements W register until 0, then
* executes an RTS
MAIN LDW #1000 ;Delay value
DELAY DECW ; (loop until zero)
 BNE DELAY
 RTS ;Exit
* Revised interrupt service routine. This routine
* transfers 16 bytes of data from IOADDR to the
* buffer pointed to by >BFADDR, preserving W.
IRQSVC PSHSW ;save W
 LDX #IOADDR
 LDY >BFADDR

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-8

 LDW #16 ;byte count
 TFM X,Y+
 PULSW
 RTI ;now W is zero

This version of the interrupt service routine works correctly for both Native Mode and
Emulation Mode.

You don’t always have the luxury of modifying interrupt service routines to preserve the W
register. In this case, the safest way to use the W register while in Emulation Mode is with
interrupts disabled. Even so, the programmer must make sure that the service routine for
non-maskable NMI interrupts preserves W. Here’s an example of “safe” use of W from
Emulation Mode:

* Routine to use W “safely” as a parameter
* to the TFM instruction. Since TFM is
* interruptible, we explicitly mask them
* for the entire time that the W register
* contents are important.
BLKCLR CLR ,-S ;Get a ZERO to the stack
 LDY >BFADDR ;Address of buffer to clear
 ORCC #$50 ;No IRQ, no FIRQ (hope NMI is OK!)
 LDW #2048 ; buffer size is 2K
* An interrupt that changed W during
* execution of the TFM would be disastrous!
 TFM X,Y+ ; clear the buffer
 ANDCC #$AF ;FIRQ, IRQ OK now.
 LEAS 1,S ;clean the stack
 RTS

The example notes a potential trouble spot; and uses the ORCC instruction to prevent this
type of trouble.

4.7 Native Mode Interrupt Processing

One of the most important differences between the 6309’s Emulation Mode and Native
Mode is the way in which interrupts are processed. In Emulation Mode, the 6309
processes interrupts identically to the 6809, while in Native Mode the 6309 pushes the W
register onto the stack (in addition to the standard 6809 registers) during interrupt
processing.

Unless a program modifies the behavior of FIRQ by setting mode bit MD.1, the FIRQ
interrupt works identically in both Native Mode and Emulation mode. This interrupt pushes

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-9

the program counter (PC) and the condition code register (CC) to the system stack, and
vectors to the address stored at $FFF6. The interrupt service routine is responsible for
preserving any registers (including W) that it modifies.

The remaining interrupts (NMI, SWI, IRQ, TRAP) operate slightly differently in each mode.

In Emulation Mode, these interrupts push 12 bytes of registers to the system stack, in the
following order:

(SP before interrupt) -> Stack Offset
PC.LO
PC.HI 10
U.LO
U.HI 8
Y.LO
Y.HI 6
X.LO
X.HI 4
DP 3
B 2
A 1

(SP after interrupt) -> CC 0

Note that the contents of each register are stored at a predetermined offset from the ending
value of the stack pointer. For example, examining the byte at (2,S) reveals the contents of
register B just before the interrupt, while examining the word at (10,S) reveals the contents
of the program counter.

In Native Mode, these interrupts push 14 bytes of registers to the system stack, in the
following order:

(SP before interrupt) -> Stack Offset
PC.LO
PC.HI 12
U.LO
U.HI 10
Y.LO
Y.HI 8
X.LO
X.HI 6
DP 5
F 4
E 3
B 2
A 1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-10

(SP after interrupt) -> CC 0

Note that the contents of each register are still stored at a predetermined offset from the
ending value of the stack pointer, but that the Native Mode offsets for registers DP, X, Y, U,
and PC differ from those in Emulation Mode. For example, the word at (10,S) now reveals
the contents of register U; we must examine the word at (12,S) to determine the contents
of the program counter.

Differences in the interrupt stack offsets for various registers aren’t usually important; what
matters in most cases is that the contents of all registers are restored to their original values
upon completion of interrupt service. This allows the interrupted program to operate without
malfunction, even if many interrupts occur.

Two important programming techniques are effected significantly by the register stacking
differences between Native Mode and Emulation Mode. These techniques are Service
Calls and Interrupt-Terminated I/O.

Service Calls

Some 6809-compatible operating systems (including OS9) use software interrupts to
transfer control from a program to an operating system service routine. This technique
conceals operating system details (such as specific service subroutine addresses) from the
application, making applications more portable and maintainable.

When using this technique, the application accesses an operating system service routine
by loading information into 6809 registers (such as D, X, Y, and U) and executing a SWI -
type instruction. The corresponding SWI vector points at the operating system service
routine, which performs a requested service using the caller’s register values (stacked by
the SWI instruction) as arguments.

In some cases, the service routine returns information to the application by modifying the
values of the stacked registers; this causes the registers to take on different values when
application execution resumes. The service routine terminates by executing an RTI
instruction, which restores all register values and causes execution to resume at the address
indicated by the stacked copy of register PC. Unless the service routine modified the
stacked PC, execution resumes at the instruction immediately following the SWI.

Native Mode changes the interrupt stack offsets of registers DP, X, Y, U, and PC. This

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-11

impacts SWI-type service routines that examine or modify caller-supplied register values.
When updating software to work in Native Mode, service routines of this type must be
rewritten to either:

• Examine or modify only the caller’s CC, A, and B registers, or
• Manually adjust the stack frame to match Emulation Mode, or
• Work only in Native Mode, using the new stack offsets, or
• Dynamically determine which stack offsets to use, by sensing the processor

operating mode.
Often, only the 3rd and 4th alternatives are practical. Note that the 2nd alternative does not
preserve the W register.

Interrupt-Terminated I/O

A less common technique involves using the NMI (non-maskable interrupt) to terminate a
time-critical I/O operation. This eliminates the need for the I/O operation to keep track of the
number of bytes transferred; instead, the peripheral hardware generates an NMI when the
transfer is complete. This technique is used by the “HALT-type” floppy disk controllers
supplied with some models of 6809-based PCs.

When using this technique, the application stores the address of a “completion routine” at an
address known to the NMI service routine. The application then enters an infinite data
transfer loop, copying data to or from the peripheral. When the transfer is complete, an NMI
occurs. The NMI service routine changes the value of the stacked program counter, making it
the address of the specified “completion routine”. This causes execution to resume at the
completion routine, rather than in the infinite data transfer loop, terminating the transfer.

Native Mode changes the interrupt stack offset of the program counter. This impacts
interrupt-terminated I/O, since the NMI service routine must change the stacked program
counter value. When updating software to work in Native Mode, service routines of this
type must be rewritten to either:

• Manually adjust the stack frame to match Emulation Mode, or
• Work only in Native Mode, using the new stack offsets, or
• Dynamically determine which stack offsets to use, by sensing the processor

operating mode.
Often, only the 2nd and 3rd alternatives are practical. Note that the 1st alternative does not
preserve the W register.

4.8 Using the TRAP Vector

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-12

Motorola’s 6809 literature describes addresses $FFF0-$FFF1 as a “reserved” interrupt
vector. On most existing 6809 systems, the value of the “reserved” vector is either
garbage data, $0000, or $FFFF.

On 6309 systems, $FFF0 is known as the TRAP vector. The 6309 uses this vector to
point at the service routine for a new type of interrupt, called a “trap”. The 6309 provides
two kinds of TRAP interrupts: the Illegal Opcode Trap, and the Division By Zero Trap.

Illegal Opcode Trap

Even though the 6309 defines many new instructions, not all combinations of binary data
make valid 6309 machine language instructions. We call the invalid combinations “illegal op-
codes”.

The 6809 has many more illegal op-codes than the 6309. The designers of the 6809
chose to ignore these illegal op-codes, since they never occur in a bug-free program.
When the 6809 encounters an illegal op-code, it usually just advances to the next
instruction.

The designers of the 6309 took a different approach, reasoning that since illegal op-codes
occur only as program bugs, the programmer or user wants to know when an illegal op-
code occurs. To accomplish this, every illegal op-code in the 6309 causes a new kind of
software interrupt: the Illegal Opcode Trap.

The Illegal Opcode Trap uses the new 6309 TRAP interrupt vector. This vector must point
at a valid interrupt service routine to take advantage of the 6309’s Illegal Opcode Trap.

When the 6309 encounters an illegal op-code, it attempts to use the TRAP vector as the
address of the Illegal Opcode Trap service routine. The processor tries to execute
whatever code or data it finds there. If the TRAP vector doesn’t point at a valid interrupt
service routine, the program that encountered the illegal op-code will malfunction
unpredictably.

Programmers can take advantage of the Illegal Opcode Trap, by reprogramming the
system’s TRAP vector (usually stored in an internal boot ROM) to match the SWI vector.
Most 6809-based systems use the SWI software interrupt for debugging. When the
debugger is running on these systems, the SWI interrupt service routine handles

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-13

“breakpoints” created when the debugger replaces the first byte of an instruction with the 1-
byte SWI op-code ($3F). Setting the TRAP vector to match the SWI vector effectively
causes additional “breakpoints” whenever the processor encounters an illegal op-code.
The programmer can distinguish between a legitimate breakpoint and an illegal op-code
breakpoint by checking the breakpoint address displayed by the debugger.

Another technique for using the Illegal Opcode Trap is to set the TRAP vector to point at an
RTI (Return From Interrupt) instruction. This causes the processor to resume execution at
the next instruction after the illegal op-code, effectively skipping over the illegal op-code.
Note that this will not make the 6309 handle illegal op-codes identically to the 6809; the
number of bytes skipped may differ between the 6809 and the 6309.

A few undocumented, but working, 6809 instructions generate an Illegal Opcode Trap on
the 6309. For example, the sequence $16XXXX is the documented coding of the 6809
LBRA instruction; this sequence works identically on each processor. The undocumented
sequence $1020XXXX is a working alternative coding of LBRA on the 6809. On the 6309,
this sequence generates an Illegal Opcode Trap. Very, very few programs use
undocumented 6809 instructions, so the slight difference between processors causes few,
if any, problems.

Division By Zero Trap

The 6309 uses the TRAP interrupt vector for a second purpose, unrelated to illegal op-
codes. The second use for the TRAP vector is the Division By Zero Trap, which occurs
when the divisor of the DIVD or DIVQ instruction is zero.

In this case, the 6309 advances the program counter past the entire division instruction
before calling the TRAP interrupt service routine. Division by zero almost always
represents a program bug, so setting the TRAP vector to match the SWI vector provides
a valuable debugging tool for the Division By Zero Trap interrupt. If your program uses
hardware division, be sure to check the divisor for a value of zero before executing DIVD or
DIVQ.

TRAP Interrupt Service Routine

Up to this point we’ve discussed setting the TRAP vector to match the SWI vector, as a
valuable debugging tool.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-14

In some cases, the system designer might prefer having a dedicated interrupt service
routine for TRAP interrupts. For example, under a 6809 operating system like OS9, SWI
software interrupts invoke operating system services (such as file I/O) when the debugger
isn’t running. If an Illegal Instruction Trap occurs when the debugger isn’t running, and the
TRAP vector matches the SWI vector, OS9 will treat the illegal op-code as an attempt to
access an operating system service. If the illegal op-code happens to match a valid
service request, OS9 will process the bogus request — possibly corrupting a file or
performing some other undesirable “service”.

A dedicated TRAP service routine avoids problems caused by misinterpretation of illegal
op-codes. Since the routine only handles TRAP interrupts, it can more effectively recover
from them — possibly by aborting the current program as soon as it encounters an illegal
op-code.

When writing a dedicated TRAP service routine, the programmer must remember that the
processor uses the TRAP vector for both Illegal Opcode Trap and Division By Zero Trap
interrupts. The programmer can tell the difference between these two interrupts by
examining the 6309’s mode (MD) register.

The Illegal Opcode Trap interrupt sets mode bit MD.6, while the Division By Zero Trap
sets mode bit MD.7. The interrupt service routine can use the BITMD instruction to
determine which type of TRAP has occurred, as shown in the example:

* Example of a TRAP interrupt service routine.
* This routine dispatches ILLEGAL OPCODE interrupts
* to a ROM debugger at address DBGENT, while it
* handles DIVISION BY ZERO interrupts by setting the
* carry bit (CC.C) on the stack frame. Note that the
* routine works for both Native and Emulation modes.
SVTRAP BITMD #%01000000 ;MD.6 non-zero if ILLEGAL OPCODE
 LBNE >DBGENT ; so go to ROM debugger
 OIM #$01,0,S ;DIVISION BY ZERO; set LSB of stacked CC
 RTI ;Return past DIVD or DIVQ, with carry set.

The BITMD instruction automatically clears each bit that it tests; in the example, the LDMD
instruction clears bit MD.6 after testing it. This the TRAP interrupt service routine from trying
to handle an error that has already been detected and serviced.

Once set by a TRAP interrupt, bits MD.6 and MD.7 remain set until explicitly cleared by
the LDMD instruction or by RESET.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-15

4.9 New 16-Bit Operations

The 6809, although considered an 8-bit microprocessor, can perform some 16 bit
operations. For example, the LDD instruction loads two bytes (16 bits) of data at once,
while the LEAX instruction can add a 16-bit offset to the contents of the 16-bit X register.

The 6809 also provides instructions that allow manipulation of 16-bit (or larger) data, one
byte at a time. Thus, we can complement a 16-bit value in the D register by executing the
sequence COMA / COMB. To negate a 16-bit value, we use the sequence COMA /
COMB / ADDD #1; part of this sequence uses 8-bit operations, while part of it uses 16-bit
operations.

The old 6809-style sequences still work on the 6309, but the 6309 can often perform
equivalent operations using less memory or less time through the use of new 16-bit
instructions. Table 4.9 shows several examples of old 6809 sequences and their more
efficient 6309 counterparts.

6809 Sequence 6309 Sequence Notes

PSHS D ADDR Y,X 16-bit register addition
TFR Y,D
LEAX D,X
PULS D

COMA NEGD 16-bit negate
COMB
ADDD #1

ASLB ASLD 16-bit shift or logic
ROLA

SUBD #1 DECD 16-bit decrement

CMPD #0 TSTD 16-bit zero test

ADCB #0 ADCD 2,X 16-bit addition with carry
ADCA #0
ADDD 2,X

<subroutine> DIVD 2,X 16-bit by 8-bit division

In addition to new 16-bit instructions, the 6309 adds two new 16-bit registers: the W
register, and the V register.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-16

The W register is slightly less flexible than the D register when used as an accumulator . For
example, you can’t perform logical functions like AND, OR, and ASL on register W, but
you can use it for load, store and arithmetic operations using the same addressing modes
as register D. In many cases, having the W register is like having a second D register to
work with.

The W register compensates for its limited accumulator functions by providing limited
pointer register functions. Used as a pointer register, W is slightly less flexible than the Y
register. For example, you can’t use W as a pointer register for certain addressing modes:
LDX ,W+ is not allowed, but LDX ,W++ is. In many cases, having the W register is like
having an additional pointer register to work with.

The V register is useful primarily for register-to-register operations. You can transfer 16-bit
values into and out of V, and you can use the V register as the source or destination
operand of any register-to-register instruction except TFM. The V register maintains its most
recent value even after RESET; the values of other 6809 or 6309 registers are undefined
after RESET.

4.10 New 32-Bit Operations

Some writers describe the 6809 as an “8/16-bit processor”, basing their description on the
6809’s 8-bit data bus and 16-bit internal registers. Both the 6809 and the 6309 can
perform 8-bit and 16-bit operations. In addition, the 6309 can perform 32-bit operations
using the new Q register.

The Q register is a 32-bit register made up of the 16-bit D register and the 16-bit W
register. Only a few 32-bit operations are allowed on register Q: you can load it (LDQ),
store it (STQ), divide its contents by a 16-bit value (DIVQ), or multiply together two 16-bit
values to obtain a 32-bit result in Q (MULD).

You can use combinations of 16-bit operations to implement more 32-bit operations on the
Q register. Here are a few examples:

Sequence of Instructions 32-Bit Result

EXG D,W Add 32-bit number to Q
ADDD 2,X
EXG D,W

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-17

ADCD 0,X

CMPD 0,U Unsigned 32-bit compare
BNE L1
CMPW 2,U
L1 EQU *

COMW Complement Q
COMD

INCW Increment Q
BNE L2
INCD
L2 EQU *

You can use any addressing mode with instructions that manipulate the Q register, but
some of the 6809 addressing modes are less useful with Q than with other registers. The
6309 doesn’t define any new 32-bit addressing modes. For example, the sequence

LDQ ,X++

loads the Q register but only advances register X by 2. It would be nice if we could
automatically advance by 4 (e.g. LDQ ,X++++), but the 6309 can’t do this. The best
alternatives for this example are:

LDQ ,X++
LEAX 2,X

and

LDD ,X++
LDW ,X++

Each alternative uses 5 bytes of memory. In Emulation Mode, the second alternative is
actually faster.

With the exception of the auto-increment load and store operations shown in the previous
example, the 6309’s 32-bit operations are significantly faster than equivalent combinations
of 8-bit or 16-bit operations.

4.11 Using the TFM Block Move Instruction

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-18

The 6309’s TFM (TransFer Multiple) instruction moves blocks of data from one memory
location to another at high speed. TFM is about 4 times faster than the simplest equivalent
byte-by-byte data copying loop.

The TFM instruction uses any two 16-bit pointer registers (S, U, Y, X, or D) to point at the
source and destination memory locations for the transfer. It uses the W register to count the
number of bytes transferred.

The 6309 has four types of TFM instruction. Each type handles a different kind of memory
transfer. Before executing any type of TFM, register W contains the number of bytes to be
moved; two pointer registers point at the first byte to be moved, and the location to which
TFM will move it. After executing TFM, the W register contains zero and the values in the
pointer registers depend on the type of TFM that was executed.

Memory-to-Memory Transfer

Two types of TFM allow programmers to rapidly copy memory from one location to
another. These types are the Post-Increment TFM and the Post-Decrement TFM.

The Post-Increment TFM copies bytes from one location to another in ascending order. The
6309 decrements the value of the W register, and increments the value of each pointer
register, after copying each byte. When the copy is complete, the source pointer register
points past the last original byte and the destination pointer register points past the last
copy byte.

The Post-Decrement TFM copies bytes from one location to another in descending order.
The 6309 decrements the value of the W register, and decrements the value of each
pointer register, after copying each byte. When the copy is complete, the source pointer
register points before the last original byte and the destination pointer register points before
the last copy byte.

Both types of TFM move a block of data from one location to another, but there’s a very
important reason for having two ways of accomplishing the move. The reason has to do
with moving overlapping blocks of data.

Consider a block of 16 bytes of data, containing the numbers 0..15, stored in computer
memory at address START. Let’s say we want to move this data to address START-1 for
some reason. We might use Post-Increment TFM to do it this way:

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-19

* Example to move 16 bytes from START to START-1
* using Post-Increment TFM.
MOVEIT LDX #START ;Source pointer
 LDU #START-1 ;Destination pointer
 LDW #16 ;Byte count
 TFM X+,U+ ;Post-Increment TFM
 RTS ;Return when done.

 RMB 1 ;This is START-1
START FCB 0,1,2,3,4,5,6,7 ;Data to move
 FCB 8,9,10,11,12,13,14,15
XEND EQU *

The TFM instruction would begin by loading the value 0 (pointed to by X), storing it at
START-1 (pointed to by U). It would then increment X and U, decrement W, and continue
with the values 1..15. At the end of the instruction, X will have the value XEND and U will
have the value XEND-1; W will have the value 0. Even though the source and destination
areas overlap, TFM copies the data correctly.

Next, consider moving the same block of data to address START+1. A programmer’s first
impulse might be to use Post-Increment TFM again:

* Example to move 16 bytes from START to START+1
* using Post-Increment TFM. (A bad idea!)
MOVEIT LDX #START ;Source pointer
 LDU #START+1 ;Destination pointer
 LDW #16 ;Byte count
 TFM X+,U+ ;Post-Increment TFM
 RTS ;Return when done.

START FCB 0,1,2,3,4,5,6,7 ;Data to move
 FCB 8,9,10,11,12,13,14,15
XEND RMB 1 ; last byte gets moved here.

The TFM instruction would again begin by loading the value 0 (pointed to by X), storing it at
START+1 (pointed to by U). It would then increment X and U, decrement W, and load the
next byte. The next byte happens to be stored at address START+1, which TFM just set
to the value 0. TFM loads this byte, stores it at START+2, and so on until 16 bytes have
been “moved”. When the TFM instruction completes, the results are not at all what the
programmer had in mind: the value of the first byte of the source data has been replicated
16 times at the destination. In this case, overlapping source and destination areas led to
disastrous Post-Increment TFM results.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-20

The right approach, for this second example, is to use Post-Decrement TFM:

* Example to move 16 bytes from START to START+1
* using Post-Decrement TFM.
MOVEIT LDX #(START+16-1) ;Source pointer
 LDU #(START+16-1)+1 ;Destination pointer
 LDW #16 ;Byte count
 TFM X-,U- ;Post-Decrement TFM
 RTS ;Return when done.

START FCB 0,1,2,3,4,5,6,7 ;Data to move
 FCB 8,9,10,11,12,13,14,15
XEND RMB 1 ; last byte gets moved here.

The TFM instruction would begin by loading the value 15 (pointed to by X), storing it at
XEND (pointed to by U). It would then decrement X and U, decrement W, and continue
with the values 14..0. At the end of the instruction, X will have the value START-1 and U will
have the value START; W will have the value 0. Post-Decrement TFM copies the data
correctly.

It’s important to realize that while Post-Decrement TFM worked for the second example, it
would have failed in the first example. That’s why the 6309 provides both Post-Increment
TFM and Post-Decrement TFM.

Here’s a “rule of thumb” to follow when deciding whether to use Post-Increment TFM or
Post-Decrement TFM:

If the starting source address is greater than or equal to the starting destination
address, use Post-Increment TFM. Otherwise, use Post-Decrement TFM.

The rule always works, but a programmer can safely choose either type of TFM when the
source and destination regions don’t overlap. For example, some programmers prefer to
use Post-Increment TFM, regardless of the relationship between the starting source and
destination addresses, when working on an application in which the source and destination
regions never overlap.

Peripheral Data Input

Another type of TFM allows programmers to rapidly read any number of bytes from a
single memory address, storing them in consecutive memory locations. This type is
Peripheral Input TFM.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-21

Computers based on the 6809 use memory-mapped I/O, meaning that every hardware
peripheral (such as a serial or parallel port, and A/D or D/A converter) has a unique memory
address. Programs obtain data from a memory-mapped input peripheral by reading one or
more of the peripheral’s memory locations. Similarly, programs send data to a memory-
mapped output peripheral by writing to one or more of the peripheral’s memory locations.

Peripheral Input TFM is intended specifically for use with certain kinds of memory-mapped
input peripherals. By specifying the “peripheral data” memory address as the source, and
the address of a buffer as the destination, a programmer can use Peripheral Input TFM to
input entire blocks of peripheral data at high speed.

Some memory-mapped input peripherals require handshaking sequences, in which the
program always checks a “peripheral status” location for a predetermined value before
reading a new input byte from a “peripheral data” location. Peripheral Input TFM blindly
reads data as quickly as possible, and doesn’t work for this type of peripheral.

Here’s an example using Peripheral Input TFM. It reads 256 bytes of data from the sector
buffer of a no-handshake hard disk controller.

* Example to read 256 bytes from the HDDATA
* (sector buffer) peripheral input register of a
* no-handshake hard disk controller to the
* buffer at register X
HDREAD PSHS U,X,CC ;Save pointers
 LDU #HDDATA ;Source pointer
 LDW #256 ;Byte count
 ORCC #$50 ;No interrupts!
 TFM U,X+ ;Peripheral input TFM
 PULS CC,X,U,PC ;Return when done.

After executing the TFM instruction, register U has the value HDDATA and register X has its
original value plus 256. The example restores X and U to their original values before
returning to the caller.

This example assumes that the hard disk controller can transfer a new data byte from the
sector buffer every 3 clock cycles (the rate at which TFM copies bytes). Programmers
should always make sure that the peripheral can operate at TFM’s transfer rate, and that the
transfer is handshake-free, before using Peripheral Input TFM.

Note that the example disables interrupts before executing the Peripheral Input TFM

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-22

instruction. This is necessary, for Peripheral Input TFM only, because of the way the TFM
instruction continues execution after an interrupt. An interrupt occurring during execution of the
TFM instruction causes TFM to “forget” the last byte read from the peripheral. TFM
“recovers” this byte after returning from the interrupt service routine, by re-reading the
peripheral. Since the peripheral doesn’t know that an interrupt occurred, it outputs the “next”
data byte rather than the “forgotten” data byte. This causes two problems: TFM loses one
byte of data, and the peripheral’s internal counter or pointer is off by one byte. To avoid
these problems, always disable interrupts before executing Peripheral Input TFM (and be
sure to restore interrupts to their original state when done).

Peripheral Data Output

The fourth type of TFM allows programmers to rapidly write any number of bytes to a
single memory address, reading them from consecutive memory locations. This type is
Peripheral Output TFM.

Peripheral Output TFM is intended specifically for use with certain kinds of memory-
mapped output peripherals. By specifying the “peripheral data” memory address as the
destination, and the address of a buffer as the source, a programmer can use Peripheral
Output TFM to output entire blocks of peripheral data at high speed.

Some memory-mapped output peripherals require handshaking sequences, in which the
program always checks a “peripheral status” location for a predetermined value before
writing a new output byte to a “peripheral data” location. Peripheral Output TFM blindly
writes data as quickly as possible, and doesn’t work for this type of peripheral.

This example uses Peripheral Output TFM to write 256 bytes of data to the sector buffer
of a no-handshake hard disk controller.

* Example to write 256 bytes to the HDDATA
* (sector buffer) peripheral input register of a
* no-handshake hard disk controller from the
* buffer at register X
HDWRIT PSHS U,X ;Save pointers
 LDU #HDDATA ;Destination pointer
 LDW #256 ;Byte count
 TFM X+,U ;Peripheral output TFM
 PULS X,U,PC ;Return when done.

After executing the TFM instruction, register U has the value HDDATA and register X has its

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-23

original value plus 256. The example restores X and U to their original values before
returning to the caller.

Like the previous example, this example assumes that the hard disk controller can operate
without handshake at the data transfer rate demanded by TFM.

Interrupts and TFM

Each type of TFM instruction performs an indivisible transfer. If any interrupts (including
NMI) occur during execution of a TFM instruction, the 6309 will not call the appropriate
interrupt service routine until the entire transfer is complete.

Large block transfers using TFM can take as long as 200ms (at 1 MHz E-clock speed). In
contrast, many types of video control hardware generate a “vertical retrace” interrupt every
17ms. If a program disables interrupts during execution of a long TFM instruction, the
computer can easily miss one or more video (or disk I/O, or other time-critical) interrupts,
leading to problems that range from annoying (display flicker) to severe (unreliable disk
operation).

If you have to disable interrupts during a block move (for example, when using Peripheral
Input TFM), it’s best to break up the block move into smaller pieces, as shown in this
example:

* Example to move 4096 bytes from (X) to (Y)
* using Peripheral Input TFM and a loop.
MOVEIT PSHS Y,X,B ;Save register values
 LDB #(4096/256) ;Number of loops
MOVE2 PSHS CC
 ORCC #$50 ;No interrupts
 LDW #256 ;Byte count per loop
 TFM X+,Y+ ;Post-Increment TFM (< 1ms at 1MHz)
 PULS CC ;Enable interrupts!
 DECB ;Decrement loop counter
 BNE MOVE2
 PULS B,X,Y,PC ;Return when done.

Even though the example uses a loop to execute several TFM instructions, it’s still much
faster than a byte-by-byte copy loop.

Other Uses of TFM

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-24

Both Post-Increment TFM and Peripheral Input TFM can clear or initialize a block of
memory. Suppose we want to clear 256 bytes of memory at (X). We might do it this way
with Peripheral Input TFM:

* Example to clear 256 bytes at (X)
* using Peripheral Input TFM.
* This example uses 15 bytes.
MCLEAR PSHS X ;Save register values
 CLR ,-S ;ZERO on stack
 LDW #256 ;Byte count
 TFM S,Y+ ;Copy 256 Zeros to (X)
 LEAS 1,S ;Clean up stack
 PULS X,PC ;Return when done.

A less obvious solution takes advantage of a “problem” we described earlier, in which
Post-Increment TFM will duplicate overlapping data if the destination address is higher than
the source address:

* Example to clear 256 bytes at (X)
* using Post-Increment TFM.
* This example also uses 15 bytes.
MCLEAR2 PSHS Y,X ;Save register values
 LEAY 1,X ;Duplicate pointer + 1
 CLR ,X ;ZERO 1st byte
 LDW #255 ;Byte count - 1
 TFM X+,Y+ ;Duplicate 255 Zeros to (Y)
 PULS X,Y,PC ;Return when done.

Each of these examples takes about the same time to execute.

Sometimes a program needs to initialize a number of locations of the stack with
predetermined constant values. This might occur, for instance, at the beginning of a
subroutine compiled from a high-level language. The Post-Decrement TFM instruction can
rapidly initialize stack variables, often using less memory than equivalent load and push
operations, as shown in this example:

* Example showing 16 bytes of stack data
* initialized using Post-Decrement TFM.
SAMPLE LEAX IDATA+15,PCR ;Point at stack initializers
 LDW #16 ;Byte count
 LEAS -1,S ;Adjust SP to point at 1st byte pushed
 TFM X-,S- ;Post-Decrement TFM
 LEAS 1,S ;Adjust SP to point at last byte pushed
 ... ;Rest of routine goes here.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-25

IDATA FCB 0,1,2,3,4,5,6,7 ;Data to initialize stack with
 FCB 8,9,10,11,12,13,14,15

In this example, it’s important to understand the LEAS -1,S and LEAS 1,S instructions that
bracket the TFM instruction. We need these extra instructions because the 6309’s stack
pointer always points at the most recently pushed item of data. The first LEAS adjusts the
stack pointer to point at the 1st location to be initialized by TFM, while the second LEAS
adjusts the stack pointer to point at the last byte initialized by TFM.

You might suspect that Post-Increment TFM could be useful to initialize a stack. This turns
out to be incorrect. If we had used Post-Increment TFM, an interrupt occurring just after we
initialized the stack would overwrite the initialized data. Even if we disabled interrupts during
initialization, an NMI could still corrupt the stack. Here’s an example of what NOT to do:

* Example showing 16 bytes of stack data
* initialized (unwisely) using Post-Increment TFM.
SAMPLE LEAX IDATA,PCR ;Point at stack initializers
 LDW #16 ;Byte count
 LEAS -16,S ;Adjust SP, then copy upwards
 TFM X+,S+ ;Post-Increment TFM
*** NMI or other interrupt here overwrites initialized stack!
 LEAS -16,S ;Move SP back to 1st byte pushed
 ... ;Rest of routine goes here.

IDATA FCB 0,1,2,3,4,5,6,7 ;Data to initialize stack with
 FCB 8,9,10,11,12,13,14,15

4.12 Hardware Multiplication and Division

On the 6809, multiplication and division took a long time — even with the 6809’s 8-bit MUL
instruction. The next example shows a 6809 routine to multiply two 16-bit unsigned
numbers, one in the D register, the other at memory location (0,X):

* 16 x 16 unsigned multiplication using 6809
* MUL instruction. Multiplies D by (0,X).
* Returns 32-bit result in D:X
MUL16 CLR ,-S ;temp. results
 CLR ,-S
 CLR ,-S
 CLR ,-S
 PSHS D
 LDA 1,X
 MUL ;D lo byte * (X) lo byte
 STD 2+2,S ; <61 cycles so far>

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-26

 LDA 1,S
 LDB 0,X
 MUL ;D lo byte * (X) hi byte
 ADDD 2+1,S ; (accumulate result)
 STD 2+1,S
 LDA 2+0,S
 ADCA #0
 STA 2+0,S ; <46 more cycles>
 LDA 0,S
 LDB 1,X
 MUL ;D hi byte * (X) lo byte
 ADDD 2+1,S ; (accumulate result)
 STD 2+1,S
 LDA 2+0,S
 ADCA #0
 STA 2+0,S ; <46 more cycles>
 LDA 0,S
 LDB 0,X
 MUL ;D hi byte * (X) hi byte
 ADDD 2+0,S ; (accumulate result)
 STD 2+0,S ; <34 more cycles>
 LEAS 2,S ;discard old value of D
 PULS D,X,PC ;Exit with result in D:X <16 more>

The subroutine takes about 203 cycles to execute. Thanks to the 6309’s MULD instruction,
similar (but signed) multiplication code looks like this:

* 16 x 16 signed multiplication using 6309
* MULD instruction. Multiplies D by (0,X).
* Returns 32-bit result in D:X
MUL16 MULD 0,X ;results to D:W
 TFR W,X ; now results in D:X
 RTS

This version takes only 43 cycles, and uses only 6 bytes of memory.

The 6309 can also perform division in hardware. The DIVD instruction divides the 16-bit
number in D by a specified 8-bit operand, while the DIVQ instruction divides the 32-bit
number in Q by a specified 16-bit operand. Each division operation produces both a
quotient (in W) and a remainder (in D).

4.13 Using Bit Manipulation Instructions

Several new 6309 instructions simplify operations involving individual bits of registers or
memory locations. Programs sometimes store and manipulate data one bit at a time, to

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-27

conserve memory. Peripheral devices often provide up to eight different control functions
using individual bits of a single memory location.

The 6309’s new bit manipulation instructions include:

Mnemonic Description
OIM OR with immediate data (set several bits)
AIM AND with immediate data (clear several bits)
EIM Exclusive-OR with immediate data (invert bits)
TIM Test bits using immediate data (test several bits)
ORR OR register-to-register (set several bits)
ANDR AND register-to-register (clear several bits)
EORR Exclusive-OR register-to-register (invert bits)
BAND AND memory bit to register bit (single bits)
BIAND AND inverse memory bit to register bit (single bits)
BOR OR memory bit to register bit (single bits)
BIOR OR inverse memory bit to register bit (single bits)
BEOR Exclusive-OR memory bit to register bit (single bits)
BIEOR Exclusive-OR inverse memory bit to register bit
LDBT Load memory bit to register bit (single bits)
STBT Store register bit to memory bit (single bits)
BITMD Test bits of MD (mode) register

These 16 new instructions fall into four basic categories based on the kind of data they
manipulate: in-place instructions, register instructions, single-bit instructions, and special
instructions.

In-Place Instructions

The in-place bit manipulation instructions (OIM, AIM, EIM, TIM) allow a programmer to
manipulate individual bits of data stored in memory, without using a register. Each of these
instructions includes 8 bits of immediate data, which are used as a bit mask for the specified
memory location.

To set one or more bits in memory, use the OIM instruction with an immediate operand
having set bits in the to-be-set bit positions of the memory location. For example, the
instruction:

OIM #%10010011,3,X

sets bit positions 7, 4, 1, and 0 of the data at memory location (3,X). The remaining bits of
the memory location are not changed.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-28

To clear one or more bits in memory, use the AIM instruction with an immediate operand
having clear bits in the to-be-cleared bit positions of the memory location. For example, the
instruction:

AIM #%10010011,3,X

clears bit positions 6, 5, 3 and 2 of the data at memory location (3,X). The remaining bits of
the memory location are not changed.

To invert one or more bits in memory, use the EIM instruction with an immediate operand
having set bits in the to-be-inverted bit positions of the memory location. For example, the
instruction:

EIM #%10010011,3,X

inverts bit positions 7, 4, 1, and 0 of the data at memory location (3,X). The remaining bits
of the memory location are not changed.

You can use direct, indexed, or extended addressing to specify the in-place memory
operand of these instructions, but the bit mask must always be immediate data.

The last instruction in this group, TIM, allows the program to test a memory location for one
or more set bits. To test for set bits, use the TIM instruction with an immediate operand
having set bits in the to-be-tested bit positions of the memory location. The instruction will
set flag CC.Z if none of the specified bits are set, and will clear flag CC.Z if any of the
specified bits are set. For example, the instruction:

TIM #%10010011,>IOPORT

tests for a set bit in position 7, 4, 1, or 0 of the data at memory location >IOPORT. The
instruction doesn’t change any bits of the memory location.

OIM, AIM, and EIM each execute an indivisible read-modify-write operation on memory.
This means that within a single instruction, the 6309 reads data from memory, processes it,
and writes modified data to the same location in memory.

Register Instructions

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-29

Sometimes a program needs to perform bit-wise logical operations on data stored in 16-bit
registers. The 6309 provides the instructions ORR, ANDR, and EORR for this purpose.

These instructions operate on the bits of one register, using data stored in the other register.
For example, the instruction:

ORR X,Y

ORs the 16-bit data in the Y register with the 16-bit data in the X register, placing the result
in Y. We can think of this as setting any bits in Y that are already set in X. Similarly, the
instruction:

ANDR D,X

clears any bits in X that are already cleared in D.

Single-Bit Instructions

The 6309 has eight single-bit manipulation instructions. These instructions update a single
bit of a specified register, based on a single bit of a specified direct page memory location,
or program a single bit of a specified direct page memory location, based on a single bit of
a specified register.

The first three single-bit instructions provide logical AND, OR, and Exclusive-OR
operations (BAND, BOR, BEOR) for 1-bit data types. Three more instructions (BIAND,
BIOR, BIEOR) invert the bit read from direct page memory before performing the logical
operation. The LDBT instruction loads a single bit of data from direct page memory, while
the STBT instruction stores a single bit of data to direct page memory. Logic “truth tables”
for these instructions are shown below.

Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

0
0
0
1

BAND Instruction
Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

0
0
1
0

BIAND Instruction

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-30

Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

0
1
1
1

BOR Instruction
Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

1
0
1
1

BIOR Instruction

Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

0
1
1
0

BEOR Instruction
Register
Bit Value

0
0
1
1

Memory
Bit Value

0
1
0
1

Result
Value

1
0
0
1

BIEOR Instruction

Register
Bit Value

-
-
-
-

Memory
Bit Value

0
1
0
1

Result
Value

0
1
0
1

LDBT Instruction
Register
Bit Value

0
0
1
1

Memory
Bit Value

-
-
-
-

Stored
Value

0
0
1
1

STBT Instruction

Single-bit instructions can access data anywhere in memory, if the program has previously
stored the most-significant 8 bits of the desired memory address in the DP register. For
example, this piece of code accesses the variable FLAGS using single-bit instructions,
regardless of where it is located in memory:

* Example to use single-bit instructions
* anywhere in memory. This example sets
* carry based on bit 4 of variable FLAGS.
 PSHS A,DP ;Save DP
 LDA #(FLAGS/256) ;Set up new DP register
 TFR A,DP
 LDBT CC.C,<FLAGS.4 ;Load CC.C from FLAGS.4
 PULS DP,A

Because of the overhead involved in setting up the DP register, you may want to use the

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-31

above technique only when you have several bit manipulation operations to perform in the
same 256-byte memory block.

The single-bit instructions can be useful when manipulating peripheral devices, which
occupy memory locations $FFXX on many systems. After storing the value $FF in the DP
register, the single-bit instructions can access any location in the range $FF00—$FFFF.

Be careful when using single-bit instructions to access peripherals. Each of the single-bit
instructions (including STBT) reads an entire direct page memory location, and not just one
bit, when executed. Many peripheral devices provide multiple status flags in a single
memory location. Reading that location may automatically clear all set flags. If you use an
instruction like LDBT to check on a single status flag, it reads the entire status byte —
clearing other set flags before your program has a chance to detect them. This could cause
lost data or other program malfunctions.

Here’s an example that uses single-bit instructions in a different way, to initialize a
peripheral device from a data byte:

* Example to use single-bit instructions to initialize
* a peripheral from a data byte. Each bit position of
* the data byte represents a pair of peripheral addresses.
* If the bit is clear, we initialize the peripheral by
* writing to the lower address. If the bit is set, we
* initialize the peripheral by writing to the higher
* address.
*
* Some types of video peripherals use similar
* initialization sequences.
*
* Enter with value in A, peripheral at VIDADR.
* Uses direct page variable TEMP as scratch.
VCINIT STA <TEMP
 LDD #$0800 ;Byte count, offset
 LDX #VIDADR ;Note: must be even!
VCLOOP LDBT B.0,<TEMP.0 ;Make B #0 or #1
 STA B,X ;Write anything to correct address
 LSR <TEMP ;Line up next TEMP.0
 LEAX 2,X ;Line up next peripheral address
 DECA
 BNE VCLOOP ;Loop for each of 8 bits.
 RTS

Single-bit instructions can quickly move groups of bits data from one location to another .
This example copies data from one 2-bit field (beginning at bit 3 of location TEMP1) to a

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-32

new field (beginning at bit 5 of location TEMP2):

* Example to use 6309 single-bit instructions to
* move a 2-bit field from TEMP1 to TEMP2. Note that
* no registers are changed, and that the field
* starts at a different bit position in each TEMP.
MOVFLD LDBT CC.C,<TEMP1.3 ;1st bit to carry
 STBT CC.C,<TEMP2.5 ; carry to destination.
 LDBT CC.C,<TEMP1.4 ;2nd bit to carry
 STBT CC.C,<TEMP2.6 ; carry to destination.
 RTS

* Here’s the same thing, in old 6809 instructions.
MOVFLD PSHS A
 LDA <TEMP2
 ANDA #%10011111 ;Strip old field value (use AIM on 6309)
 STA <TEMP2
 LDA <TEMP1
 ANDA #%00011000 ;Get just field being copied
 ASLA ;Align to destination bit position
 ASLA ; (shift bit 3 to bit 5, etc.).
 ORA <TEMP2 ;OR copied data into TEMP1
 STA <TEMP2
 PULS A,PC

The version using 6309 single-bit instructions is slightly shorter, and much easier to
understand, than the equivalent 6809 version.

So far, the examples in this section have used LDBT and STBT. You can use any of the
other single-bit instructions similarly. This example ORs together the two fields used in the
previous example:

* Example to use 6309 single-bit instructions to
* move a 2-bit field from TEMP1 to TEMP2. Note that
* no registers are changed, and that the field
* starts at a different bit position in each TEMP.
ORBFLD LDBT CC.C,<TEMP1.3 ;1st bit to carry
 BOR CC.C,<TEMP2.5 ; OR in current value
 STBT CC.C,<TEMP2.5 ; carry to destination.
 LDBT CC.C,<TEMP1.4 ;2nd bit to carry
 BOR CC.C,<TEMP2.6 ; OR in current value
 STBT CC.C,<TEMP2.6 ; carry to destination.
 RTS

* Here’s the same thing, in old 6809 instructions.
ORBFLD PSHS A
 LDA <TEMP1

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-33

 ANDA #%00011000 ;Get just field being copied
 ASLA ;Align to destination bit position
 ASLA ; (shift bit 3 to bit 5, etc.).
 ORA <TEMP2 ;OR copied data into TEMP1
 STA <TEMP2
 PULS A,PC

In this case, the version using 6309 single-bit instructions is longer, but still easier to
understand, than the equivalent 6809 version.

Special Instructions

The special BITMD instruction is the only way provided for a 6309 program to read the
mode (MD) register.

The MD register contains two flags: the Illegal Opcode Trap Flag (MD.6), and the Division
By Zero Trap Flag (MD.7). BITMD checks these flags, either one at a time or together.
BITMD can’t check any other bits in the MD register.

When BITMD accesses the MD register, it automatically clears any flag bits that it checks.
It’s best to check one bit at a time - checking two flags with a single BITMD instruction will
clear both flags, without telling you which one was set.

Most programs use BITMD only in TRAP interrupt service routines.

4.14 Capabilities of the D and W Registers

Although the D and W registers are both general-purpose accumulators, the 6309 allows
more operations on the D register than on the W register.

This is also true of the individual 8-bit registers that make up W and D. The 6309 has more
instructions to manipulate the A and B registers, than it has to manipulate the E and F
registers. Very few instructions can manipulate the Q register, which is made up of A, B, E,
and F.

The Table summarizes major instruction types of the 6309, and indicates which registers
those instructions can manipulate.

Register

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-34

Mnem. Description Q D W A B E F
LD load X X X X X X X
ST store X X X X X X X
INC,DEC add / sub 1 X X X X X X
TST zero test X X X X X X
COM complement X X X X X X
CLR zero set X X X X X X
ADD add X X X X X X
SUB subtract X X X X X X
CMP compare X X X X X X
SBC sub. w/ carry X + X X + +
AND,BIT bit-wise AND X + X X + +
EOR bit-wise XOR X + X X + +
ADC add w/ carry X + X X + +
OR bit-wise OR X + X X + +
LSR rt. shift X X X X
ROR,ROL rotate X X X X
ASR,ASL arith. shift X X X
NEG negate X X X

Each “X” indicates an instruction that works in all of the standard addressing modes for the
given register; each “+” indicates an instruction that works only in register-to-register mode.
Blank spaces indicate that the instruction cannot be used to manipulate the given register.

The 6309 supports all of the above instructions for registers A, B, and D. You can usually
use the EXG instruction, in conjunction with another instruction, to effectively perform that
instruction on register W, E, or F. Here’s an example that performs the equivalent of an
exclusive-OR into the W register:

* Perform equivalent of EORW #$1234.
FAKEOR EXG W,D ;swap registers
 EORD #$1234 ;perform operation on D
 EXG D,W ;swap registers again
 RTS

Note that the order of registers doesn’t matter for the EXG instruction; EXG D,W performs
exactly the same operation as EXG W,D, even though the 6309 encodes the two
instructions differently. The example uses two different instructions to emphasize to a
human reader that W is the register of interest.

The W register is also a pointer register, and can be used with many of the 6309 indexed
addressing modes. The Table summarizes major addressing modes of the 6309, and
indicates which addressing modes can be used with the W, E, and F registers.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-35

Register
Mnem. Description Y W E F
,r No offset X X
n5,r 5-bit fixed offset X X
n8,r 8-bit fixed offset X X
n16,r 16-bit fixed offset X X
r8,r 8-bit register offset X + +
r16,r 16-bit register offset X +
,r+ Post-increment by 1 X
,r++ Post-increment by 2 X X
,-r Pre-decrement by 1 X
,--r Pre-decrement by 2 X X
n8,PCR 8-bit PC-relative
n16,PCR 16-bit PC-relative

Register
Mnem. Description Y W E F
[,r] Indirect, No offset X X
[n8,r] Indirect, 8-bit fixed offset X
[n16,r] Indirect, 16-bit fixed offset X X
[r8,r] Indirect, 8-bit register offset X + +
[r16,r] Indirect, 16-bit register offset X +
[,r++] Indirect, Post-increment by 2 X X
[,--r] Indirect, Pre-decrement by 2 X X
[n8,PCR] Indirect, 8-bit PC-relative
[n16,PCR] Indirect, 16-bit PC-relative
[n16] Indirect, Extended

The “Y” column shows addressing modes usable with the Y register (a full-fledged pointer
register) for comparison. Each “X” indicates an addressing mode in which the specified
register can be used as a pointer; each “+” indicates an addressing mode in which the
specified register can be used as an offset. Blank spaces indicate that the specified register
cannot be used with the addressing mode. Note that the W register can be used with many
of the same addressing modes as the Y register.

4.15 Uses for the V Register

The 6309’s V register can hold any 16-bit value. Very few instructions can manipulate the
contents of the V register, but this register has several important uses.

The V register has one special feature: any value in the V register stays there, even when
the computer is reset. Only turning off the computer erases the contents of the V register.
Furthermore, the V register is automatically initialized to all 1’s ($FFFF) at power-up.
Programs can use the value in the V register for “reset protection”: by checking the value of

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-36

V in the RESET routine, a program can determine whether to preserve in-memory data
structures:

* RESET routine.
*
* If this is initial power-up, initialize all peripherals and memory.
* If this is a RESET, just initialize the peripherals
RESET JSR PINIT ;Initialize peripherals
 TFR V,X ;Check V register for $FFFF
 CMPX #$FFFF
 BNE WARMST ;If not $FFFF, this is just a reset
* Here, we know it’s a power-up. Init memory and store “reset” flag
* value in V
COLDST JSR MINIT ;Initialize memory
 LDD #$1234 ; Set V register (any value but $FFFF)
 TFR D,V
WARMST JMP >PROGRM ;RESET complete. Go do the program!

On the 6809, programmers often performed a similar reset protection test by storing a
special value in a predetermined memory location, instead of the V register. This older
technique works most of the time, but there’s always a chance that the predetermined
memory location will accidentally already have the special value at power-up. This causes
the program to skip power-up memory initialization, leading to program malfunctions. Using
the 6309 V register as described above, there’s no uncertainty.

Reset protection is one of the most effective uses for the V register, but it has other uses
too. When using the V register for both reset protection and other purposes, you must be
careful not to leave a value of $FFFF in the register accidentally. The easiest solution is to
use V either for reset protection, or as a useful calculation register, but not both.

A second use for the V register is to hold a frequently used value. You can then use the
6309’s register-to-register instructions to quickly load this value or use it in a calculation. The
value can be a constant, or some number that varies from time to time, but is used in a lot of
calculations. After storing a value in V, you can load it into any register using the 2-byte TFR
instruction; equivalent 6809 register loading instructions require 3-4 bytes if the number is
constant, or 2-4 bytes and a memory location if the number varies.

* Example: loading another register from V

* Start by initializing V early in the program
 LDD #$1234
 TFR D,V

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-37

* Much later in the program, we need the value $1234 in a
* lot of places. Two of the places might look like this:
 TFR V,X ;Get $1234 to X
 ...
 ADDR V,U ;Add $1234 to U
 ...

The 6309 doesn’t stack the V register during interrupts, and (unlike the W register) there’s
no way to directly push the V register to the stack. This means that in a multi-tasking
environment, several different programs using the V register at the same time are likely to
corrupt each other’s V register value. You may want to limit or carefully control your use of
the V register. Remember, in a multi-tasking environment any other task (including ones
beyond your control) could change the value of your V register unless the operating
system preserves it.

4.16 Register-to-Register Operations

While most of the 6309’s instructions manipulate a single register, or a register and a
memory location, several of the new instructions manipulate two registers at once. These
are called register-to-register instructions.

Some of these instructions are present in both the 6309 and the 6809. The register-to-
register instructions common to both processors are most useful for address calculations.
For example,

LEAX D,X

adds the contents of the D register to the contents of the X register (usually, D is used as an
offset into a data structure that X points at). The two instructions below each set the Y
register equal to the U register:

TFR U,Y ;Transfer U to Y (Y <- U)

LEAY ,U ;Load U with “effective address” Y

Only a few instructions like this exist on the 6809. The 6309 adds many new ones, as
shown in the Table.

Processor Type
Mnem. Description 6809 6309
TFR transfer X X
EXG exchange X X

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-38

LEA calculate address X X
ABX add B to X X X
ADDR add registers X
ADCR add w/ carry X
SUBR subtract regs. X
SBCR subtract w/ carry X
ANDR bit-wise AND X
ORR bit-wise OR X
EORR bit-wise XOR X
CMPR compare registers X

Each of the register-to-register instructions (except ABX) takes any two register names as
arguments.

Most 6809 programs use the D register for arithmetic, with other registers (X, Y, U) for
temporary storage and as pointers. These programs often copy other registers into D for
manipulation, and then copy the result back to the original register. For example, a 6809
program that needs to add the X and Y registers might use this sequence:

EXG Y,D ;Get Y into D (stash D in Y)
LEAX D,Y ;Add Y to X
EXG Y,D ;Put back Y and D as they were

A 6809 program that needs to subtract Y from D has a more complex task:

EXG X,D ;Get X into D (stash D in X)
PSHS Y ;Copy Y to where we can use it on stack
SUBD ,S++ ;Now D = X+Y, stack is clean
EXG X,D ;Put back X and D as they were

The 6309’s register-to-register instructions simplify each of these operations:

ADDR Y,X ;Add Y to X

SUBR Y,X ;Subtract Y from X

Register-to-register instructions make programs that perform arithmetic on registers both
smaller and faster.

4.17 Application Summary

In this Chapter, we’ve examined most of the 6309’s new programming features. Most of
the new features use familiar instruction mnemonics and work with all of the 6809’s
addressing modes.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-39

Some of the new instructions add new addressing modes (e.g. single-bit instructions), while
others greatly expand the use of an existing mode (e.g. register-to-register instructions).

Because the instructions were added to the 6809’s basic set, and because the designers of
the 6309 needed a drop-in replacement for the 6809, some of the new features (TFM, the
W and V registers) aren’t fully integrated with the 6809’s interrupt system. These features
greatly enhance the 6809, but must be used with the proper precautions to avoid missed
interrupts or data corruption.

The new instructions of the 6309 provide a basis for building 6809-family programs that are
smaller and faster than ever before. We hope the information in this Chapter has given you
some ideas and guidelines for programming the 6309.

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

4-40

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
OO NEG DIRECT 2 6 5 20 BRA RELATIVE 2 3 3

O1 OIM DIRECT 3 6 6 21 BRN RELATIVE 2 3 3

O2 AIM DIRECT 3 6 6 22 BHI RELATIVE 2 3 3

O3 COM DIRECT 2 6 5 23 BLS RELATIVE 2 3 3

O4 LSR DIRECT 2 6 5 24 BHS/BCC RELATIVE 2 3 3

O5 EIM DIRECT 3 6 6 25 BLO/BCS RELATIVE 2 3 3

O6 ROR DIRECT 2 6 5 26 BNE RELATIVE 2 3 3

O7 ASR DIRECT 2 6 5 27 BEQ RELATIVE 2 3 3

O8 ASL/LSL DIRECT 2 6 5 28 BVC RELATIVE 2 3 3

O9 ROL DIRECT 2 6 5 29 BVS RELATIVE 2 3 3

OA DEC DIRECT 2 6 5 2A BPL RELATIVE 2 3 3

OB TIM DIRECT 3 6 6 2B BMI RELATIVE 2 3 3

OC INC DIRECT 2 6 5 2C BGE RELATIVE 2 3 3

OD TST DIRECT 2 6 4 2D BLT RELATIVE 2 3 3

OE JMP DIRECT 2 3 2 2E BGT RELATIVE 2 3 3

OF CLR DIRECT 2 6 5 2F BLE RELATIVE 2 3 3

10 (PREBYTE) --- --- --- --- 30 LEAX INDEXED 2+ 4+ 4+

11 (PREBYTE) --- --- --- --- 31 LEAY INDEXED 2+ 4+ 4+

12 NOP INHERENT 1 2 1 32 LEAS INDEXED 2+ 4+ 4+

13 SYNC INHERENT 1 >=4 >=4 33 LEAU INDEXED 2+ 4+ 4+

14 SEXW INHERENT 1 2 1 34 PSHS IMMEDIATE 2 5+ 4+

15 --- --- --- --- --- 35 PULS IMMEDIATE 2 5+ 4+

16 LBRA RELATIVE 3 5 4 36 PSHU IMMEDIATE 2 5+ 4+

17 LBSR RELATIVE 3 9 7 37 PULU IMMEDIATE 2 5+ 4+

18 --- --- --- --- --- 38 --- --- --- --- ---

19 DAA INHERENT 1 2 1 39 RTS INHERENT 1 5 4

1A ORCC IMMEDIATE 2 3 2 3A ABX INHERENT 1 3 1

1B --- -- --- --- --- 3B RTI INHERENT 1 6/15 6/17

1C ANDCC IMMEDIATE 2 3 3 3C CWAI INHERENT 2 >=20 >=22

1D SEX INHERENT 1 2 1 3D MUL INHERENT 1 11 10

1E EXG REGISTER 2 8 5 3E --- --- --- --- ---

1F TFR REGISTER 2 6 4 3F SWI INHERENT 1 19 21

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-1

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
40 NEGA INHERENT 1 2 1 60 NEG INDEXED 2+ 6+ 6+

41 --- --- --- --- --- 61 OIM INDEXED 3+ 7+ 7+

42 --- --- --- --- --- 62 AIM INDEXED 3+ 7+ 7+

43 COMA INHERENT 1 2 1 63 COM INDEXED 2+ 6+ 6+

44 LSRA INHERENT 1 2 1 64 LSR INDEXED 2+ 6+ 6+

45 --- --- --- --- --- 65 EIM INDEXED 3+ 6+ 6+

46 RORA INHERENT 1 2 1 66 ROR INDEXED 2+ 6+ 6+

47 ASRA INHERENT 1 2 1 67 ASR INDEXED 2+ 6+ 6+

48 ASLA/LSLA INHERENT 1 2 1 68 ASL/LSL INDEXED 2+ 6+ 6+

49 ROLA INHERENT 1 2 1 69 ROL INDEXED 2+ 6+ 6+

4A DECA INHERENT 1 2 1 6A DEC INDEXED 2+ 6+ 6+

4B --- --- --- --- --- 6B TIM INDEXED 3+ 7+ 7+

4C INCA INHERENT 1 2 1 6C INC INDEXED 2+ 6+ 6+

4D TSTA INHERENT 1 2 1 6D TST INDEXED 2+ 6+ 5+

4E --- --- --- --- --- 6E JMP INDEXED 2+ 3+ 3+

4F CLRA INHERENT 1 2 1 6F CLR INDEXED 2+ 6+ 6+

50 NEGB INHERENT 1 2 1 70 NEG EXTENDED 3 7 6

51 --- --- --- --- --- 71 OIM EXTENDED 4 7 7

52 --- --- --- --- --- 72 AIM EXTENDED 4 7 7

53 COMB INHERENT 1 2 1 73 COM EXTENDED 3 7 6

54 LSRB INHERENT 1 2 1 74 LSR EXTENDED 3 7 6

55 --- --- --- --- --- 75 EIM EXTENDED 4 7 7

56 RORB INHERENT 1 2 1 76 ROR EXTENDED 3 7 6

57 ASRB INHERENT 1 2 1 77 ASR EXTENDED 3 7 6

58 ALSB/LSLB INHERENT 1 2 1 78 ASL/LSL EXTENDED 3 7 6

59 ROLB INHERENT 1 2 1 79 ROL EXTENDED 3 7 6

5A DECB INHERENT 1 2 1 7A DEC EXTENDED 3 7 6

5B --- -- --- --- --- 7B TIM EXTENDED 4 5 5

5C INCB INHERENT 1 2 1 7C INC EXTENDED 3 7 6

5D TSTB INHERENT 1 2 1 7D TST EXTENDED 3 7 5

5E --- --- --- --- --- 7E JMP EXTENDED 3 4 3

5F CLRB INHERENT 1 2 1 7F CLR EXTENDED 3 7 6

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-2

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
80 SUBA IMMEDIATE 2 2 2 A0 SUBA INDEXED 2+ 4+ 4+

81 CMPA IMMEDIATE 2 2 2 A1 CMPA INDEXED 2+ 4+ 4+

82 SBCA IMMEDIATE 2 2 2 A2 SBCA INDEXED 2+ 4+ 4+

83 SUBD IMMEDIATE 3 4 3 A3 SUBD INDEXED 2+ 6+ 5+

84 ANDA IMMEDIATE 2 2 2 A4 ANDA INDEXED 2+ 4+ 4+

85 BITA IMMEDIATE 2 2 2 A5 BITA INDEXED 2+ 4+ 4+

86 LDA IMMEDIATE 2 2 2 A6 LDA INDEXED 2+ 4+ 4+

87 --- --- --- --- --- A7 STA INDEXED 2+ 4+ 4+

88 EORA IMMEDIATE 2 2 2 A8 EORA INDEXED 2+ 4+ 4+

89 ADCA IMMEDIATE 2 2 2 A9 ADCA INDEXED 2+ 4+ 4+

8A ORA IMMEDIATE 2 2 2 AA ORA INDEXED 2+ 4+ 4+

8B ADDA IMMEDIATE 2 2 2 AB ADDA INDEXED 2+ 4+ 4+

8C CMPX IMMEDIATE 3 4 3 AC CMPX INDEXED 2+ 6+ 5+

8D BSR RELATIVE 2 7 6 AD JSR INDEXED 2+ 7+ 6+

8E LDX IMMEDIATE 3 3 3 AE LDX INDEXED 2+ 5+ 5+

8F --- --- --- --- --- AF STX INDEXED 2+ 5+ 5+

90 SUBA DIRECT 2 4 3 B0 SUBA EXTENDED 3 5 4

91 CMPA DIRECT 2 4 3 B1 CMPA EXTENDED 3 5 4

92 SBCA DIRECT 2 4 3 B2 SBCA EXTENDED 3 5 4

93 SUBD DIRECT 2 6 4 B3 SUBD EXTENDED 3 7 5

94 ANDA DIRECT 2 4 3 B4 ANDA EXTENDED 3 5 4

95 BITA DIRECT 2 4 3 B5 BITA EXTENDED 3 5 4

96 LDA DIRECT 2 4 3 B6 LDA EXTENDED 3 5 4

97 STA DIRECT 2 4 3 B7 STA EXTENDED 3 5 4

98 EORA DIRECT 2 4 3 B8 EORA EXTENDED 3 5 4

99 ADCA DIRECT 2 4 3 B9 ADCA EXTENDED 3 5 4

9A ORA DIRECT 2 4 3 BA ORA EXTENDED 3 5 4

9B ADDA DIRECT 2 4 3 BB ADDA EXTENDED 3 5 4

9C CMPX DIRECT 2 6 4 BC CMPX EXTENDED 3 7 5

9D JSR DIRECT 2 7 6 BD JSR EXTENDED 3 8 7

9E LDX DIRECT 2 5 4 BE LDX EXTENDED 3 6 5

9F STX DIRECT 2 5 4 BF STX EXTENDED 3 6 5

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-3

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
C0 SUBB IMMEDIATE 2 2 2 E0 SUBB INDEXED 2+ 4+ 4+

C1 CMPB IMMEDIATE 2 2 2 E1 CMPB INDEXED 2+ 4+ 4+

C2 SBCB IMMEDIATE 2 2 2 E2 SBCB INDEXED 2+ 4+ 4+

C3 ADDD IMMEDIATE 3 4 3 E3 ADDD INDEXED 2+ 6+ 5+

C4 ANDB IMMEDIATE 2 2 2 E4 ANDB INDEXED 2+ 4+ 4+

C5 BITB IMMEDIATE 2 2 2 E5 BITB INDEXED 2+ 4+ 4+

C6 LDB IMMEDIATE 2 2 2 E6 LDB INDEXED 2+ 4+ 4+

C7 --- --- --- --- --- E7 STB INDEXED 2+ 4+ 4+

C8 EORB IMMEDIATE 2 2 2 E8 EORB INDEXED 2+ 4+ 4+

C9 ADCB IMMEDIATE 2 2 2 E9 ADCB INDEXED 2+ 4+ 4+

CA ORB IMMEDIATE 2 2 2 EA ORB INDEXED 2+ 4+ 4+

CB ADDB IMMEDIATE 2 2 2 EB ADDB INDEXED 2+ 4+ 4+

CC LDD IMMEDIATE 3 3 3 EC LDD INDEXED 2+ 5+ 5+

CD LDQ IMMEDIATE 5 5 5 ED STD INDEXED 2+ 5+ 5+

CE LDU IMMEDIATE 3 3 3 EE LDU INDEXED 2+ 5+ 5+

CF --- --- --- --- --- EF STU INDEXED 2+ 5+ 5+

D0 SUBB DIRECT 2 4 3 F0 SUBB EXTENDED 3 5 4

D1 CMPB DIRECT 2 4 3 F1 CMPB EXTENDED 3 5 4

D2 SBCB DIRECT 2 4 3 F2 SBCB EXTENDED 3 5 4

D3 ADDD DIRECT 2 6 4 F3 ADDD EXTENDED 3 7 5

D4 ANDB DIRECT 2 4 3 F4 ANDB EXTENDED 3 5 4

D5 BITB DIRECT 2 4 3 F5 BITB EXTENDED 3 5 4

D6 LDB DIRECT 2 4 3 F6 LDB EXTENDED 3 5 4

D7 STB DIRECT 2 4 3 F7 STB EXTENDED 3 5 4

D8 EORB DIRECT 2 4 3 F8 EORB EXTENDED 3 5 4

D9 ADCB DIRECT 2 4 3 F9 ADCB EXTENDED 3 5 4

DA ORB DIRECT 2 4 3 FA ORB EXTENDED 3 5 4

DB ADDB DIRECT 2 4 3 FB ADDB EXTENDED 3 5 4

DC LDD DIRECT 2 5 4 FC LDD EXTENDED 3 6 5

DD STD DIRECT 2 5 4 FD STD EXTENDED 3 6 5

DE LDU DIRECT 2 5 4 FE LDU EXTENDED 3 6 5

DF STU DIRECT 2 5 4 FF STU EXTENDED 3 6 5

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-4

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
1000 --- --- --- --- --- 1020 --- --- --- --- ---

1001 --- --- --- --- --- 1021 LBRN RELATIVE 4 5 5

1002 --- --- --- --- --- 1022 LBHI RELATIVE 4 5/6 5

1003 --- --- --- --- --- 1023 LBLS RELATIVE 4 5/6 5

1004 --- --- --- --- --- 1024 LBHS/LBCC RELATIVE 4 5/6 5

1005 --- --- --- --- --- 1025 LBLO/LBCS RELATIVE 4 5/6 5

1006 --- --- --- --- --- 1026 LBNE RELATIVE 4 5/6 5

1007 --- --- --- --- --- 1027 LBEQ RELATIVE 4 5/6 5

1008 --- --- --- --- --- 1028 LBVC RELATIVE 4 5/6 5

1009 --- --- --- --- --- 1029 LBVS RELATIVE 4 5/6 5

100A --- --- --- --- --- 102A LBPL RELATIVE 4 5/6 5

100B --- --- --- --- --- 102B LBMI RELATIVE 4 5/6 5

100C --- --- --- --- --- 102C LBGE RELATIVE 4 5/6 5

100D --- --- --- --- --- 102D LBLT RELATIVE 4 5/6 5

100E --- --- --- --- --- 102E LBGT RELATIVE 4 5/6 5

100F --- --- --- --- --- 102F LBLE RELATIVE 4 5/6 5

1010 --- --- --- --- --- 1030 ADDR REGISTER 3 4 4

1011 --- --- --- --- --- 1031 ADCR REGISTER 3 4 4

1012 --- --- --- --- --- 1032 SUBR REGISTER 3 4 4

1013 --- --- --- --- --- 1033 SBCR REGISTER 3 4 4

1014 --- --- --- --- --- 1034 ANDR REGISTER 3 4 4

1015 --- --- --- --- --- 1035 ORR REGISTER 3 4 4

1016 --- --- --- --- --- 1036 EORR REGISTER 3 4 4

1017 --- --- --- --- --- 1037 CMPR REGISTER 3 4 4

1018 --- --- --- --- --- 1038 PSHSW INHERENT 2 6 6

1019 --- --- --- --- --- 1039 PULSW INHERENT 2 6 6

101A --- --- --- --- --- 103A PSHUW INHERENT 2 6 6

101B --- --- --- --- --- 103B PULUW INHERENT 2 6 6

101C --- --- --- --- --- 103C --- --- --- --- ---

101D --- --- --- --- --- 103D --- --- --- --- ---

101E --- --- --- --- --- 103E --- --- --- --- ---

101F --- --- --- --- --- 103F SWI2 INHERENT 2 20 22

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-5

OP MNEM MODE # EM ~ NM ~ MNEMOP MODE # EM ~ NM ~

1040 NEGD INHERENT 2 2 1 1060 --- --- --- --- ---

1041 --- --- --- --- --- 1061 --- --- --- --- ---

1042 --- --- --- --- --- 1062 --- --- --- --- ---

1043 COMD INHERENT 2 2 1 1063 --- --- --- --- ---

1044 LSRD INHERENT 2 2 1 1064 --- --- --- --- ---

1045 --- --- --- --- --- 1065 --- --- --- --- ---

1046 RORD INHERENT 2 2 1

INHERENT 2 2 1

INHERENT 2 2 1

1066 --- --- --- --- ---

1047 ASRD INHERENT 2 2 1 1067 --- --- --- --- ---

1048 ASLD/LSLD

ASLW/LSLW

INHERENT 2 2 1 1068 --- --- --- --- ---

1049 ROLD INHERENT 2 2 1 1069 --- --- --- --- ---

104A DECD INHERENT 2 2 1 106A --- --- --- --- ---

104B --- --- --- --- --- 106B --- --- --- --- ---

104C INCD INHERENT 2 2 1 106C --- --- --- --- ---

104D TSTD INHERENT 2 2 1 106D --- --- --- --- ---

104E --- --- --- --- --- 106E --- --- --- --- ---

104F CLRD INHERENT 2 2 1 106F --- --- --- --- ---

1050 NEGW INHERENT 2 2 1 1070 --- --- --- --- ---

1051 --- --- --- --- --- 1071 --- --- --- --- ---

1052 --- --- --- --- --- 1072 --- --- --- --- ---

1053 COMW INHERENT 2 3 2 1073 --- --- --- --- ---

1054 LSRW INHERENT 2 3 2 1074 --- --- --- --- ---

1055 --- --- --- --- --- 1075 --- --- --- --- ---

1056 RORW INHERENT 2 3 2 1076 --- --- --- --- ---

1057 ASRW 1077 --- --- --- --- ---

1058 1078 --- --- --- --- ---

1059 ROLW INHERENT 2 3 2 1079 --- --- --- --- ---

105A DECW INHERENT 2 3 2 107A --- --- --- --- ---

105B --- -- --- --- --- 107B --- --- --- --- ---

105C INCW INHERENT 2 3 2 107C --- --- --- --- ---

105D TSTW INHERENT 2 3 2 107D --- --- --- --- ---

105E --- --- --- --- --- 107E --- --- --- --- ---

105F CLRW INHERENT 2 3 1 107F --- --- --- --- ---

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-6

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
1080 SUBW IMMEDIATE 4 5 4 10A0 SUBW INDEXED 3+ 7+ 6+

1081 CMPW IMMEDIATE 4 5 4 10A1 CMPW INDEXED 3+ 7+ 6+

1082 SBCD IMMEDIATE 4 5 4 10A2 SBCD INDEXED 3+ 7+ 6+

1083 CMPD IMMEDIATE 4 5 4 10A3 CMPD INDEXED 3+ 7+ 6+

1084 ANDD IMMEDIATE 4 5 4 10A4 ANDD INDEXED 3+ 7+ 6+

1085 BITD IMMEDIATE 4 5 4 10A5 BITD INDEXED 3+ 7+ 6+

1086 LDW IMMEDIATE 4 4 4 10A6 LDW INDEXED 3+ 6+ 6+

1087 --- --- --- --- --- 10A7 STW INDEXED 3+ 6+ 6+

1088 EORD IMMEDIATE 4 5 4 10A8 EORD INDEXED 3+ 7+ 6+

1089 ADCD IMMEDIATE 4 5 4 10A9 ADCD INDEXED 3+ 7+ 6+

108A ORD IMMEDIATE 4 5 4 10AA ORD INDEXED 3+ 7+ 6+

108B ADDW IMMEDIATE 4 5 4 10AB ADDW INDEXED 3+ 7+ 6+

108C CMPY IMMEDIATE 4 5 4 10AC CMPY INDEXED 3+ 7+ 6+

108D --- --- --- --- --- 10AD --- --- --- --- ---

108E LDY IMMEDIATE 4 4 4 10AE LDY INDEXED 3+ 6+ 6+

108F --- --- --- --- --- 10AF STY INDEXED 3+ 6+ 6+

1090 SUBW DIRECT 3 7 5 10B0 SUBW EXTENDED 4 8 6

1091 CMPW DIRECT 3 7 5 10B1 CMPW EXTENDED 4 8 6

1092 SBCD DIRECT 3 7 5 10B2 SBCD EXTENDED 4 8 6

1093 CMPD DIRECT 3 7 5 10B3 CMPD EXTENDED 4 8 6

1094 ANDD DIRECT 3 7 5 10B4 ANDD EXTENDED 4 8 6

1095 BITD DIRECT 3 7 5 10B5 BITD EXTENDED 4 8 6

1096 LDW DIRECT 3 6 5 10B6 LDW EXTENDED 4 7 6

1097 STW DIRECT 3 6 5 10B7 STW EXTENDED 4 7 6

1098 EORD DIRECT 3 7 5 10B8 EORD EXTENDED 4 8 6

1099 ADCD DIRECT 3 7 5 10B9 ADCD EXTENDED 4 8 6

109A ORD DIRECT 3 7 5 10BA ORD EXTENDED 4 8 6

109B ADDW DIRECT 3 7 5 10BB ADDW EXTENDED 4 8 6

109C CMPY DIRECT 3 7 5 10BC CMPY EXTENDED 4 8 6

109D --- --- --- --- --- 10BD --- --- --- --- ---

109E LDY DIRECT 3 6 5 10BE LDY EXTENDED 4 7 6

109F STY DIRECT 3 6 5 10BF STY EXTENDED 4 7 6

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-7

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
10C0 --- --- --- --- --- 1OE0 --- --- --- --- ---

10C1 --- --- --- --- --- 1OE1 --- --- --- --- ---

10C2 --- --- --- --- --- 1OE2 --- --- --- --- ---

10C3 --- --- --- --- --- 1OE3 --- --- --- --- ---

10C4 --- --- --- --- --- 1OE4 --- --- --- --- ---

10C5 --- --- --- --- --- 1OE5 --- --- --- --- ---

10C6 --- --- --- --- --- 1OE6 --- --- --- --- ---

10C7 --- --- --- --- --- 1OE7 --- --- --- --- ---

10C8 --- --- --- --- --- 1OE8 --- --- --- --- ---

10C9 --- --- --- --- --- 1OE9 --- --- --- --- ---

10CA --- --- --- --- --- 1OEA --- --- --- --- ---

10CB --- --- --- --- --- 1OEB --- --- --- --- ---

10CC --- --- --- --- --- 1OEC LDQ INDEXED 3+ 8+ 8+

10CD --- --- --- --- --- 1OED STQ INDEXED 3+ 8+ 8+

10CE LDS IMMEDIATE 4 4 4 1OEE LDS INDEXED 3+ 6+ 6+

10CF --- --- --- --- --- 1OEF STS INDEXED 3+ 6+ 6+

10D0 --- --- --- --- --- 10F0 --- --- --- --- ---

10D1 --- --- --- --- --- 10F1 --- --- --- --- ---

10D2 --- --- --- --- --- 10F2 --- --- --- --- ---

10D3 --- --- --- --- --- 10F3 --- --- --- --- ---

10D4 --- --- --- --- --- 10F4 --- --- --- --- ---

10D5 --- --- --- --- --- 10F5 --- --- --- --- ---

10D6 --- --- --- --- --- 10F6 --- --- --- --- ---

10D7 --- --- --- --- --- 10F7 --- --- --- --- ---

10D8 --- --- --- --- --- 10F8 --- --- --- --- ---

10D9 --- --- --- --- --- 10F9 --- --- --- --- ---

10DA --- --- --- --- --- 10FA --- --- --- --- ---

10DB --- --- --- --- --- 10FB --- --- --- --- ---

10DC LDQ DIRECT 3 8 7 10FC LDQ EXTENDED 4 9 8

10DD STQ DIRECT 3 8 7 10FD STQ EXTENDED 4 9 8

10DE LDS DIRECT 3 6 5 10FE LDS EXTENDED 4 7 6

10DF STS DIRECT 3 6 5 10FF STS EXTENDED 4 7 6

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-8

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
1100 --- --- --- --- --- 1120 --- --- --- --- ---

1101 --- --- --- --- --- 1121 --- --- --- --- ---

1102 --- --- --- --- --- 1122 --- --- --- --- ---

1103 --- --- --- --- --- 1123 --- --- --- --- ---

1104 --- --- --- --- --- 1124 --- --- --- --- ---

1105 --- --- --- --- --- 1125 --- --- --- --- ---

1106 --- --- --- --- --- 1126 --- --- --- --- ---

1107 --- --- --- --- --- 1127 --- --- --- --- ---

1108 --- --- --- --- --- 1128 --- --- --- --- ---

1109 --- --- --- --- --- 1129 --- --- --- --- ---

110A --- --- --- --- --- 112A --- --- --- --- ---

110B --- --- --- --- --- 112B --- --- --- --- ---

110C --- --- --- --- --- 112C --- --- --- --- ---

110D --- --- --- --- --- 112D --- --- --- --- ---

110E --- --- --- --- --- 112E --- --- --- --- ---

110F --- --- --- --- --- 112F --- --- --- --- ---

1110 --- --- --- --- --- 1130 BAND SINGLE BIT 4 7 6

1111 --- --- --- --- --- 1131 BIAND SINGLE BIT 4 7 6

1112 --- --- --- --- --- 1132 BOR SINGLE BIT 4 7 6

1113 --- --- --- --- --- 1133 BIOR SINGLE BIT 4 7 6

1114 --- --- --- --- --- 1134 BEOR SINGLE BIT 4 7 6

1115 --- --- --- --- --- 1135 BIEOR SINGLE BIT 4 7 6

1116 --- --- --- --- --- 1136 LDBT SINGLE BIT 4 7 6

1117 --- --- --- --- --- 1137 STBT SINGLE BIT 4 8 7

1118 --- --- --- --- --- 1138 TFM REGISTER 3 6+3W 6+3W

1119 --- --- --- --- --- 1139 TFM REGISTER 3 6+3W 6+3W

111A --- --- --- --- --- 113A TFM REGISTER 3 6+3W 6+3W

111B --- --- --- --- --- 113B TFM REGISTER 3 6+3W 6+3W

111C --- --- --- --- --- 113C BITMD IMMEDIATE 3 4 4

111D --- --- --- --- --- 113D LDMD IMMEDIATE 3 5 5

111E --- --- --- --- --- 113E --- --- --- --- ---

111F --- --- --- --- --- 113F SWI3 INHERENT 2 20 22

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-9

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
1140 --- --- --- --- --- 1160 --- --- --- --- ---

1141 --- --- --- --- --- 1161 --- --- --- --- ---

1142 --- --- --- --- --- 1162 --- --- --- --- ---

1143 COME INHERENT 2 2 2 1163 --- --- --- --- ---

1144 --- --- --- --- --- 1164 --- --- --- --- ---

1145 --- --- --- --- --- 1165 --- --- --- --- ---

1146 --- --- --- --- --- 1166 --- --- --- --- ---

1147 --- --- --- --- --- 1167 --- --- --- --- ---

1148 --- --- --- --- --- 1168 --- --- --- --- ---

1149 --- --- --- --- --- 1169 --- --- --- --- ---

114A DECE INHERENT 2 2 2 116A --- --- --- --- ---

114B --- --- --- --- --- 116B --- --- --- --- ---

114C INCE INHERENT 2 2 2 116C --- --- --- --- ---

114D TSTE INHERENT 2 2 2 116D --- --- --- --- ---

114E --- --- --- --- --- 116E --- --- --- --- ---

114F CLRE INHERENT 2 2 2 116F --- --- --- --- ---

1150 --- --- --- --- --- 1170 --- --- --- --- ---

1151 --- --- --- --- --- 1171 --- --- --- --- ---

1152 --- --- --- --- --- 1172 --- --- --- --- ---

1153 COMF INHERENT 2 2 2 1173 --- --- --- --- ---

1154 --- --- --- --- --- 1174 --- --- --- --- ---

1155 --- --- --- --- --- 1175 --- --- --- --- ---

1156 --- --- --- --- --- 1176 --- --- --- --- ---

1157 --- --- --- --- --- 1177 --- --- --- --- ---

1158 --- --- --- --- --- 1178 --- --- --- --- ---

1159 --- --- --- --- --- 1179 --- --- --- --- ---

115A DECF INHERENT 2 2 2 117A --- --- --- --- ---

115B --- --- --- --- --- 117B --- --- --- --- ---

115C INCF INHERENT 2 2 2 117C --- --- --- --- ---

115D TSTF INHERENT 2 2 2 117D --- --- --- --- ---

115E --- --- --- --- --- 117E --- --- --- --- ---

115F CLRF INHERENT 2 2 2 117F --- --- --- --- ---

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-10

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
1180 SUBE IMMEDIATE 3 3 3 11A0 SUBE INDEXED 3+ 5+ 5+

1181 CMPE IMMEDIATE 3 3 3 11A1 CMPE INDEXED 3+ 5+ 5+

1182 --- --- --- --- --- 11A2 --- --- --- --- ---

1183 CMPU IMMEDIATE 4 5 4 11A3 CMPU INDEXED 3+ 7+ 6+

1184 --- --- --- --- --- 11A4 --- --- --- --- ---

1185 --- --- --- --- --- 11A5 --- --- --- --- ---

1186 LDE IMMEDIATE 3 3 3 11A6 LDE INDEXED 3+ 5+ 5+

1187 --- --- --- --- --- 11A7 STE INDEXED 3+ 5+ 5+

1188 --- --- --- --- --- 11A8 --- --- --- --- ---

1189 --- --- --- --- --- 11A9 --- --- --- --- ---

118A --- --- --- --- --- 11AA --- --- --- --- ---

118B ADDE IMMEDIATE 3 3 3 11AB ADDE INDEXED 3+ 5+ 5+

118C CMPS IMMEDIATE 4 5 4 11AC CMPS INDEXED 3+ 7+ 6+

118D DIVD IMMEDIATE 3 25 25 11AD DIVD INDEXED 3+ 27+ 27+

118E DIVQ IMMEDIATE 4 34 34 11AE DIVQ INDEXED 3+ 36+ 36+

118F MULD IMMEDIATE 4 28 28 11AF MULD INDEXED 3+ 30+ 30+

1190 SUBE DIRECT 3 5 4 11B0 SUBE EXTENDED 4 6 5

1191 CMPE DIRECT 3 5 4 11B1 CMPE EXTENDED 4 6 5

1192 --- --- --- --- --- 11B2 --- --- --- --- ---

1193 CMPU DIRECT 3 7 5 11B3 CMPU EXTENDED 4 8 6

1194 --- --- --- --- --- 11B4 --- --- --- --- ---

1195 --- --- --- --- --- 11B5 --- --- --- --- ---

1196 LDE DIRECT 3 5 4 11B6 LDE EXTENDED 4 6 5

1197 STE DIRECT 3 5 4 11B7 STE EXTENDED 4 6 5

1198 --- --- --- --- --- 11B8 --- --- --- --- ---

1199 --- --- --- --- --- 11B9 --- --- --- --- ---

119A --- --- --- --- --- 11BA --- --- --- --- ---

119B ADDE DIRECT 3 5 4 11BB ADDE EXTENDED 4 6 5

119C CMPS DIRECT 3 7 5 11BC CMPS EXTENDED 4 8 6

119D DIVD DIRECT 3 27 26 11BD DIVD EXTENDED 4 28 27

119E DIVQ DIRECT 3 36 35 11BE DIVQ EXTENDED 4 37 36

119F MULD DIRECT 3 30 29 11BF MULD EXTENDED 4 31 30

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-11

OP MNEM MODE # EM ~ NM ~ OP MNEM MODE # EM ~ NM ~
11C0 SUBF IMMEDIATE 3 3 3 1lE0 SUBF INDEXED 3+ 5+ 5+

11C1 CMPF IMMEDIATE 3 3 3 1lE1 CMPF INDEXED 3+ 5+ 5+

11C2 --- --- --- --- --- 1lE2 --- --- --- --- ---

11C3 --- --- --- --- --- 1lE3 --- --- --- --- ---

11C4 --- --- --- --- --- 1lE4 --- --- --- --- ---

11C5 --- --- --- --- --- 1lE5 --- --- --- --- ---

11C6 LDF IMMEDIATE 3 3 3 1lE6 LDF INDEXED 3+ 5+ 5+

11C7 --- --- --- --- --- 1lE7 STF INDEXED 3+ 5+ 5+

11C8 --- --- --- --- --- 1lE8 --- --- --- --- ---

11C9 --- --- --- --- --- 1lE9 --- --- --- --- ---

11CA --- --- --- --- --- 1lEA --- --- --- --- ---

11CB ADDF IMMEDIATE 3 3 3 1lEB ADDF INDEXED 3+ 5+ 5+

11CC --- --- --- --- --- 1lEC --- --- --- --- ---

11CD --- --- --- --- --- 1lED --- --- --- --- ---

11CE --- --- --- --- --- 1lEE --- --- --- --- ---

11CF --- --- --- --- --- 1lEF --- --- --- --- ---

11D0 SUBF DIRECT 3 5 4 11F0 SUBF EXTENDED 4 6 5

11D1 CMPF DIRECT 3 5 4 11F1 CMPF EXTENDED 4 6 5

11D2 --- --- --- --- --- 11F2 --- --- --- --- ---

11D3 --- --- --- --- --- 11F3 --- --- --- --- ---

11D4 --- --- --- --- --- 11F4 --- --- --- --- ---

11D5 --- --- --- --- --- 11F5 --- --- --- --- ---

11D6 LDF DIRECT 3 5 4 11F6 LDF EXTENDED 4 6 5

11D7 STF DIRECT 3 5 4 11F7 STF EXTENDED 4 6 5

11D8 --- --- --- --- --- 11F8 --- --- --- --- ---

11D9 --- --- --- --- --- 11F9 --- --- --- --- ---

11DA --- --- --- --- --- 11FA --- --- --- --- ---

11DB ADDF DIRECT 3 5 4 11FB ADDF EXTENDED 4 6 5

11DC --- --- --- --- --- 11FC --- --- --- --- ---

11DD --- --- --- --- --- 11FD --- --- --- --- ---

11DE --- --- --- --- --- 11FE --- --- --- --- ---

11DF --- --- --- --- --- 11FF --- --- --- --- ---

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved.

Appendix A: 6309 Programming Card

A-12

INDEXED MODE FORM +# +~ Post-Byte W Post-Byte
No Offset ,r 0 0 1RR00100 10001111

5-Bit Offset n5,r 0 1 0RRnnnnn ---

8-Bit Offset n8,r 1 1 1RR01000 ---

16-Bit Offset n16,r 2 4 1RR01001 10101111

A Reg. Offset A,r 0 1 1RR00110 ---

B Reg. Offset B,r 0 1 1RR00101 ---

D Reg. Offset D,r 0 4 1RR01011 ---

E Reg. Offset E,r 0 1 1RR00111 ---

F Reg. Offset F,r 0 1 1RR01010 ---

W Reg. Offset W,r 0 4 1RR01110 ---

Post-Increment by 1 ,r+ 0 2 1RR00000 ---

Post-Increment by 2 ,r++ 0 3 1RR00001 11001111

Pre-Decrement by 1 ,-r 0 2 1RR00010 ---

Pre-Decrement by 2 ,--r 0 3 1RR00011 11101111

8-Bit PC Relative n8,PCR 1 1 1XX01100 ---

16-Bit PC-Relative n16,PCR 2 5 1XX01101 ---

Indirect, No Offset [,r] 0 3 1RR10100 10010000

Indirect, 8-Bit Offset [n8,r] 1 4 1RR11000 ---

Indirect, 16-Bit Offset [n16,r] 2 7 1RR11001 10110000

Indirect, A Reg. Offset [A,r] 0 4 1RR10110 ---

Indirect, B Reg. Offset [B,r] 0 4 1RR10101 ---

Indirect, D Reg. Offset [D,r] 0 7 1RR11011 ---

Indirect, E Reg. Offset [E,r] 0 7 1RR10111 ---

Indirect, F Reg. Offset [F,r] 0 7 1RR11010 ---

Indirect, W Reg. Offset [W,r] 0 7 1RR11110 ---

Indirect, Post-Increment by 2 [,r++] 0 6 1RR10001 11010000

Indirect, Pre-Decrement by 2 [,--r] 0 6 1RR10011 11110000

Indirect, 8-Bit PC-Relative [n8,PCR] 1 4 1RR11100 ---

Indirect, 16-Bit PC-Relative [n16,PCR] 2 8 1XX11101 ---

Indirect, Extended [n16] 2 5 10011111 ---

RR is register used. XX=don't care,RR is register used. XX=don't care,
00=X, 01=Y, 10=U, 11=S00=X, 01=Y, 10=U, 11=S

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved

Appendix A: 6309 Programming Card

A-13

Stack (PSH / PUL)Stack (PSH / PUL)Stack (PSH / PUL)Stack (PSH / PUL) Post-BytePost-Byte

7 6 5 4 3 2 1 0

P C S / U Y X D P B A C C

Register-to-Register (TFR)Register-to-Register (TFR)Register-to-Register (TFR)Register-to-Register (TFR)Register-to-Register (TFR) Post-BytePost-Byte

7 6 5 4 3 2 1 0

SourceSource DestinationDestination

For Source or Destination:For Source or Destination:For Source or Destination:For Source or Destination:

%0000 D %1000 A
%0001 X %1001 B
%0010 Y %1010 CC
%0011 U %1011 DP
%0100 S %1100 ---
%0101 PC %1101 ---
%0110 W %1110 E
%0111 V %1111 F

Bit Manipulation (BAND)Bit Manipulation (BAND)Bit Manipulation (BAND)Bit Manipulation (BAND)Bit Manipulation (BAND) Post-BytePost-Byte

7 6 5 4 3 2 1 0

RegisterRegister Memory bit #(0..7)Memory bit #(0..7)Memory bit #(0..7) Register bit #(0..7)Register bit #(0..7)Register bit #(0..7)

For Register:For Register:

%00 CC %10 B
%01 A %11 ---

The 6309 Book Copyright © 1992, 1993 Burke & Burke. All Rights Reserved

Appendix A: 6309 Programming Card

A-14

cburke
Typewritten Text
Inside Back Cover.Intentionally left blank.

	The_6309_Book
	Cover
	Blank Page

	Contents
	Overview
	Addr. Mode Intro
	Addressing Modes
	Instr. Ref. Intro
	Instruction Reference
	Application Notes
	Programming Card
	Programming Card - P2
	Programming Card - P3
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

